2 Малышев И.Ю. 1, 2

1 ГБОУ ВПО «Московский государственный медико-стоматологический университет» Министерства здравоохранения и социального развития Российской Федерации, Москва

2 УРАМН НИИ общей патологии и патофизиологии РАМН, Москва

Значимую роль в инициации и развитии воспалительных реакций в легких играют альвеолярные макрофаги – одни из центральных клеток системы врожденного иммунитета. Важными компонентами врожденного ответа являются способность макрофагов к фагоцитированию и их миграционная активность. Альвеолярные макрофаги провоспалительного М1 фенотипа, выделенные от мышей линии С57/BL6, обладают большей фагоцитарной активностью по отношению к S.aureus по сравнению с выделенными от мышей линии BALB/c альвеолярными макрофагами антивоспалительного М2 фенотипа. При сравнительном анализе миграционной активности установлена альтернативная зависимость показателя активности от типа используемого хемоаттрактанта.

макрофаги

фенотипы макрофагов

фагоцитоз

миграционная активность

1. Macrophage phenotype as a determinant of biologic scaffold remodeling / S.F. Badylak, J.E. Valentin, A.K. Ravindra et al. // Tissue Eng Part A. – 2008. – Vol. 14. Issue 11. – P. 1835–42.

2. Benoit M., Desnues B., Mege J.L. Macrophage Polarization in Bacterial Infections // The Journal of Immunology. – 2008. – Vol. 181. – P. 3733–3739.

3. Cairo G., Locati M., Mantovani A. Control of iron homeostasis as a key component of macrophage polarization // Haematologica. – 2010. – Vol 95, Issue 11. – P. 1801–1803.

4. Pulmonary Immunobiology and Inflammation in Pulmonary Diseases. NHLBI Workshop Summary / D. Crapo, A.G. Harmsen, M.P. Sherman, R.A. Musson // Am J Respir Crit Care Med. – 2000. – Vol. 162. – P. 1983–1986.

5. Frevert, Wong, Goodman et al. Rapid Fluorescence-based Measurement of Neutrophil Migration in Vitro // Journal of Immunological Methods. – 1998. – Vol. 213. – P. 41–52.

6. Goldmann O., von Köckritz-Blickwede M., Höltje C. et al. Transcriptome Analysis of Murine Macrophages in Response to Infection with Streptococcus pyogenes Reveals an Unusual Activation Program // Infect Immun. – 2007. – Vol. 75, Issue 8. – P. 4148–57.

7. Lasbury, M.E., Durant P.J., Lee C.H.. Numbers of alveolar macrophages are increased during Pneumocystis pneumonia in mice // J. Eukaryot. Microbiol. – 2003. – Vol. 50(Suppl). – P. 637–638.

8. Lay J.C., Alexis N.E., Zeman K.L., et al. In-vivo Uptake of Inhaled Particles by Airway Phagocytes is Enhanced in Mild Asthmatics Compared to Normal Volunteers // Thorax. – 2009. – Vol. 64. – P. 313–320.

9. Martinez F.O., Sica A., Mantovani A. et al. Macrophage activation and polarization // Front Biosci. – 2008. – Vol. 13. – P. 453–61.

10. Platt N., Haworth R., da Silva R.P., Gordon S. Scavenger receptors and phagocytosis of bacteria and apoptotic cells // Advances in Cellular and Molecular Biology of Membranes and Organelles. – 1999. – Vol. 5. – P. 71–85.

11. Stangel M., Joly E., Scolding N.J., Compston D.A.S. Normal polyclonal immunoglobulins (‘IVIg’) inhibit microglial phagocytosis in vitro // Journal of Neuroimmunology. – 2000. – Vol. 106(1). – P. 137–144

12. Tumitan A.R., Monnazzi L.G., Ghiraldi F.R. et al. Pattern of macrophage activation in yersinia-resistant and yersinia-susceptible strains of mice // Microbiol Immunol. – 2007. – Vol. 51(10). – P. 1021–8.

Воспалительные реакции играют исключительно важную роль в развитии большого количества заболеваний легких, таких как бронхиальная астма, острый респираторный дисстресс синдром и бронхолегочная дисплазия . Известно, что одну из центральных ролей в инициации и развитии воспалительных реакций в легких играют альвеолярные макрофаги. При активации эти клетки продуцируют свободные радикалы, NO, цитокины, кемокины и другие медиаторы воспаления и благодаря этому запускают врожденный и адаптивный иммунный ответ и обезвреживают патогенные микробы.

В ходе иммунного ответа нативные макрофаги могут приобретать различные функциональные фенотипы . Так, классический М1 фенотип характеризуется продукцией провоспалительных цитокинов и кемокинов, таких как TNF-α, IL-1ß, IL-6, IL-12, воспалительного белка макрофагов 1α (MIP-1α), а также повышенной генерацией оксида азота (NO) . М1 макрофаги являются эффекторными клетками, которые интегрированы в Th1 ответ. Этот фенотип убивает микроорганизмы и опухолевые клетки и продуцирует большие количества провоспалительных цитокинов . Альтернативный М2 фенотип макрофагов характеризуется продукцией антивоспалительных цитокинов, таких как IL-10 и рецептор-ловушки IL-1 (IL-1ra). Функциональное предназначение М2 фенотипа состоит прежде всего в регулировании воспалительного ответа, участии в ангиогенезе, ремоделировании тканей и восстановлении иммунного гомеостаза, нарушенного воспалением.

Очевидно, что эффективность, с которой врожденный иммунитет будет удалять патогенные микробы и при необходимости стимулировать ангиогенез, ремоделирование и восстановление поврежденных тканей, существенно зависит от фагоцитарной активности макрофагов, и от того, как быстро эти клетки могут приходить в очаг воспаления, т.е. от их миграционной активности.

Таким образом, способность к фагоцитированию и миграционная активность макрофагов составляют важные компоненты врожденного ответа, от которого зависит, как быстро иммунная система сможет восстановить гомеостаз, нарушенный появлением инфекции и повреждением тканей. Однако до сих пор важный вопрос о том, каковы различия фагоцитарной способности и миграционной активности М1 и М2 фенотипов макрофагов остается открытым.

Цель данной работы состояла в том, чтобы ответить на этот вопрос.

Материалы и методы исследования

Мыши

Для изучения функциональных ответов (определения фагоцитарной и миграционной активности) выделение альвеолярных макрофагов проводилось у мышей различных линий. Известно, что разные генетические линии животных могут иметь разные фенотипы макрофагов. Например, мыши линии С57/BL6 имеют М1 фенотип, тогда как мыши Balb/c - М2 фенотип . Мыши линий С57/BL6 и Balb/c были получены из вивария ГБОУ ВПО МГМСУ Минздравсоцразвития России, Москва, Россия. Для исследований использовались самцы обеих линий, возраст 10-12 недель, массой 23-28 г. Исследования проводились в соответствии с правилами надлежащей лабораторной практики (GLP). Мыши содержались в условиях вивария, не допускающих попадание патогенных микроорганизмов.

Выделение альвеолярных макрофагов

Альвеолярные макрофаги выделялись из бронхоальвеолярного лаважа (БАЛ) мышей. Предварительно мышам внутрибрюшинно вводился раствор хлоралгидрата (из расчета 32,5 нг на 100 г веса животного), впоследствии мыши умерщвлялись с помощью перерезания нижней полой вены и обескровливания. Для получения бронхо-альвеолярного лаважа (БАЛ) в легкие через внутритрахеальный катетер вводилось по 1 мл стерильного фосфатного буфера PBS 37 °С (у каждого животного выполнялось по 4 промывки) . Полученный БАЛ центрифугировался при 1000 об./мин 4 мин. Клеточный осадок ресуспендировали в 3 мл среды RPMI 1640 с последующим определением количества макрофагов в камере Горяева и доведением концентрации клеток в среде RPMI 1640 до 1∙106/мл.

Определение фагоцитарной активности альвеолярных макрофагов

Определение фагоцитарной активности макрофагов производилось на взвеси клеток, полученных из бронхо-альвеолярного лаважа по методике, указанной выше. В качестве объекта фагоцитоза использовали инактивированный нагреванием штамм Staphylococcus aureus 9198. Бактериальную взвесь готовили из суточной культуры убитых прогреванием при температуре 56 °С в течение 1 часа микроорганизмов с последующей трехкратной отмывкой в стерильном физиологическом растворе. По стандартному образцу мутности ОСО 42-28-85П 10 единиц (ГИСК им. Л.А. Тарасевича) определяли концентрацию бактериальных клеток, доводя до 1∙10 9 /мл. В промаркированные лунки 24-луночного планшета вносили макрофаги в среде RPMI 1640 с концентрацией 1∙10 6 /мл и Staphylococcus aureus 9198 (концентрация микроорганизмов у подготовленного штамма составляет 1∙10 9 /мл) в соотношении макрофаги/стафилококк - 1:400; 1:600; 1:800; 1:1000) до общего объема 1 мл/лунка. Планшет с макрофагами и микроорганизмами инкубировали в течение 3 часов при температуре 37 ± 0,5 °С при 5 % СО 2 . Через 3 часа лунки планшета промывались раствором Хенкса (+ 4 °С), высушивались при комнатной температуре в течение 30 минут с последующей фиксацией абсолютным этиловым спиртом и краской по Романовскому-Гимзе. Фагоцитарная функция макрофагов оценивалась прямым визуальным подсчетом поглощенных микробов. При использовании прямого визуального метода рассчитывался фагоцитарный индекс (ФИ) - процент фагоцитирующих клеток от общего числа и фагоцитарное число (ФЧ) - среднее количество микробов, захваченных одной клеткой (оценивалось только для фагоцитирующих клеток).

Определение миграционной активности макрофагов

Определение миграционной активности макрофагов производилось на взвеси клеток, полученных из бронхо-альвеолярного лаважа по методике, указанной выше, ресуспендированных в хемотаксической среде (RPMI без фенолового красного 96 мл, 1М HEPES - 1 мл, 7,5 % NaHCO3 - 2 мл, 200 mM L-глутамин - 1 мл, BSA - 0,5 г).

В основе методики определения миграционной активности альвеолярных макрофагов лежит принцип метода Бойдена, основанный на прохождении лейкоцитов из одной половины камеры с взвесью клеток в другую половину камеры, содержащую хемоатрактант, и разделенных между собой мембранным фильтром. Анализ хемотаксиса проводился непосредственно по методике Neuro Probe Protocol .

В нижние промаркированные микроячейки камеры вносили по 30 мкл хемоаттрактанта (использовали БАЛ мышей линии С57/BL6 и Balb/c), помещали фильтр с диаметром пор 8 мкм, камеру закрывали и в верхние микроячейки камеры вносили по 100 мкл суспензии клеток (с концентрацией 1∙106/мл) в хемотаксической среде. Заполненную камеру инкубировали в течение 3 часов при температуре 37 ± 0,5 °С при 5 % СО2. Через 3 часа из верхних ячеек камеры проводилась аспирация клеток, ячейки заполнялись 2 мМ ЭДТА в 1∙PBS на 15 минут с последующей аспирацией ЭДТА. Камеру открывали и клетки с верхней стороны мембраны удаляли с помощью Q-наконечника. Затем мембрану центрифугировали при 1500 g 15 минут (при +4 °С). Окрашивание мембраны проводили азур-эозином по Романовскому в течение 15 минут. Подсчет количества мигрировавших клеток проводился в каждой ячейке под оптическим микроскопом.

Для оценки миграционной активности нами был использован индекс миграции - отношение количества мигрировавших клеток к количеству немигрировавших в одной лунке.

Результаты исследования и их обсуждение

На рисунке представлены данные о фагоцитарной активности макрофагов двух фенотипов в зависимости от соотношения количества бактерий на один макрофаг.

Сравнительная оценка фагоцитарной активности макрофагов М1 фенотипа, выделенных
из мышей линии С57 и макрофагов М2 фенотипа, выделенных из мышей линии BABL/c

Видно, что при всех соотношениях среднее количество бактерий, поглощенных одним М1 макрофагом, было достоверно больше, чем у М2 макрофагов. Это означает, что М1 фенотип более эффективно фагоцитирует S.аureus, чем М2 фенотип. При этом фагоцитарная активность М1 фенотипа больше зависела от концентрации S. Aureus, чем у М2 фенотипа. На графике это отражается в более крутом подъеме кривой М1, по сравнению с М2.

Дальше в таблице представлены данные о миграционной подвижности макрофагов М1 и М2 фенотипов в ответ на два разных типа хемоаттрактантов: БАЛ, выделенный из мышей линии BALB/c (БАЛ BALB/c), и БАЛ из С57 (БАЛ С57).

Сравнительная оценка миграционной активности макрофагов М1 фенотипа, выделенных из мышей линии С57, и макрофагов М2 фенотипа, выделенных из мышей линии BABL/c. Миграционная активность количественно оценивалась по миграционному индексу, представленному как соотношение количества мигрировавших клеток к немигрировавшим

Эти данные позволяют сделать несколько важных выводов.

Во-первых, сравнительная оценка миграционной подвижности М1 и М2 фенотипов альтернативно отличается в зависимости от того какой тип хемоаттрактанта-БАЛ был использован. Действительно, в случае, когда в качестве хемоаттрактанта используется БАЛ BALB/c , активность макрофагов М2 существенно выше, по сравнению с М1 (1,88 ± 0,13 vs 1,12 ± 0,12, р < 0,01). В том же случае, когда в качестве хемоаттрактанта используется БАЛ С57 , активность макрофагов М1 существенно выше, по сравнению с М2 (1,50+0,11 vs 0,93 ± 0,12, р < 0,01).

Во-вторых, миграционная активность М2 макрофагов, выделенных из мышей BALB/c в ответ на «родной» БАЛ BALB/c , достоверно выше, чем активность М1 макрофагов, выделенных из мышей С57 в ответ на свой «родной» БАЛ С57 (1,88 ± 0,13 vs 1,50 ± 0,11, р < 0,05).

В-третьих, миграционное движение макрофагов на собственный «родной» БАЛ существенно выше, чем на «чужеродный» БАЛ. Так, миграционная активность макрофагов М2 фенотипа, выделенных из мышей BALB/c в ответ на свой БАЛBALB/c, была в два раза выше, чем на чужеродный БАЛС57 (1,88 ± 0,13 vs 0,93 ± 0,12, р < 0,001). Аналогичным образом, миграционная активность макрофагов М1 фенотипа, выделенных из мышей С57 в ответ на свой БАЛС57, была почти в полтора раза выше, чем на чужеродный БАЛBALB/c (1,50 ± 0,11 vs 1,12 ± 0,12, р < 0,05).

Результат того, что макрофаги М1 фенотипа, выделенные от мышей С57, обладают большей фагоцитарной активностью по отношению к S.aureus, по сравнению с макрофагами М2 фенотипом, выделенными от мышей BALB/c, является вполне предсказуемым. Вероятно, в значительной степени это связано с тем, что М1 макрофаги иммунологически «ориентированы» на захват внутриклеточных микробов, таких как бактерии и вирусы , и они, по сравнению с М2 фенотипом, имеют большее представительство микробных паттерн-распознающих рецепторов фагоцитоза .

М2 фенотип участвует в ремоделировании и восстановлении поврежденных тканей , поэтому больше «ориентирован» на захват мертвых фрагментов погибших клеток или инородных неживых части-
чек . Поэтому не исключено, что при использовании вместо S.aureus, например, частичек краски или латексных шариков, фагоцитоз М2 фенотипа будет более эффективен по сравнению с М1. Подтверждение этому действительно есть в литературе. Так показано, что по отношению к латексным шарикам и частицам зимозана фагоцитоз М2 фенотипа был более эффективен, по сравнению с М1 фенотипом .

Таким образом, сравнительный вывод о фагоцитарной активности разных фенотипов макрофагов должен всегда учитывать природу фагоцитируемого агента: бактерии, частички краски, или мертвые фрагменты клеток. В нашем случае, в отношении S.aureus фагоцитарная активность М1 фенотипа была существенно выше, по сравнению с М2 фенотипом макрофагов.

При сравнительном анализе миграционной активности складывается аналогичная ситуация, а именно, наши данные показали, что сравнительная оценка альтернативно зависит от типа используемого хемоаттрактанта. Очевидно, что выяснение причин такой зависимости потребует подробной расшифровки состава хемоаттрактантных молекул в двух типах БАЛ и ответ на вопрос, каковы отличия между БАЛBALB/c и БАЛС57 по содержанию хемоаттрактантных кемокинов, цитокинов, сурфактантных белков и др.

Очевидно, что в наших условиях, миграционная активность макрофагов зависела от двух факторов:

1) собственная способность макрофага того или иного фенотипа к движению;

2) концентрация и мощность хемоаттрактантных молекул в том или ином БАЛ.

Поэтому при сравнительной оценке миграционной активности разных фенотипов макрофагов, выделенных из разных линий животных, целесообразно использовать интегральный подход, то есть оценивать миграционную активность макрофагов в своих естественных условиях своего БАЛ. При таком подходе оказалось, что миграционная активность М2 макрофагов мышей BALB/c оказалась достоверно выше таковой для М1 макрофагов мышей С57.

И, наконец, также заслуживает внимания еще один интересный факт, что миграционная активность и М1, и М2 фенотипов существенно снижалась в ответ на чужеродный БАЛ. Это кажется странным, потому что макрофаг есть именно та клетка иммунной системы, которую «чужеродное» должно привлекать гораздо сильнее, чем «свое». Для ответа на этот вопрос также необходимо проанализировать химический и молекулярный состав БАЛ мышей разных линий.

В целом наши результаты показали, что фагоцитарная и миграционная активность М1 и М2 фенотипов макрофагов существенно различается, однако вывод о направленности этих различий необходимо делать с учетом конкретных условий проявления этих активностей.

Рецензенты:

Чеснокова Н.П., д.м.н., профессор, профессор кафедры патологической физиологии ГБОУ ВПО «Саратовский государственный медицинский университет им. В.И. Разумовского» Министерства здравоохранения и социального развития РФ, г. Саратов;

Архипенко Ю.В., д.б.н., профессор, зав. лабораторией адаптационной медицины факультета фундаментальной медицины МГУ им. М.В. Ломоносова, г. Москва.

Работа поступила в редакцию 10.11.2011.

Библиографическая ссылка

Лямина С.В., Веденикин Т.Ю., Круглов С.В., Шимшелашвили Ш.Л., Буданова О.П., Малышев И.Ю., Малышев И.Ю. ОСОБЕННОСТИ ФАГОЦИТАРНОЙ И МИГРАЦИОННОЙ АКТИВНОСТИ АЛЬВЕОЛЯРНЫХ МАКРОФАГОВ М1 И М2 ФЕНОТИПОВ // Фундаментальные исследования. – 2011. – № 11-3. – С. 536-539;
URL: http://fundamental-research.ru/ru/article/view?id=29267 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Статья на конкурс «био/мол/текст»: Иммунная система - это мощная многослойная защита нашего организма, которая потрясающе эффективна против вирусов, бактерий, грибов и других патогенов извне. Кроме того, иммунитет способен эффективно распознавать и уничтожать трансформированные собственные клетки, которые могут перерождаться в злокачественные опухоли. Однако сбои в работе иммунной системы (по генетическим либо другим причинам) приводят к тому, что однажды злокачественные клетки берут верх. Разросшаяся опухоль становится нечувствительной к атакам организма и не только успешно избегает уничтожения, но и активно «перепрограммирует» защитные клетки для обеспечения собственных нужд. Поняв механизмы, которые опухоль использует для подавления иммунного ответа, мы сможем разработать контрмеры и попытаться сдвинуть баланс в сторону активации собственных защитных сил организма для борьбы с болезнью.

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2014 в номинации «Лучший обзор».

Главный спонсор конкурса - дальновидная компания Генотек .
Конкурс поддержан ОАО «РВК» .

Опухоль и иммунитет - драматический диалог в трех частях с прологом

Долгое время считалось, что причина низкой эффективности иммунного ответа при раке - то, что опухолевые клетки слишком похожи на нормальные, здоровые, чтобы иммунная система, настроенная на поиск «чужаков», могла их как следует распознавать. Этим как раз и объясняется тот факт, что иммунная система успешнее всего противостоит опухолям вирусной природы (их частота резко возрастает у людей, страдающих иммунодефицитом). Однако позже стало ясно, что это не единственная причина.

Если в этой статье речь идет про иммунные аспекты рака, то в работе «Страшней клешней на свете нет... » можно прочесть про особенности ракового метаболизма. - Ред.

Оказалось, что взаимодействие раковых клеток с иммунной системой носит гораздо более разносторонний характер. Опухоль не просто «прячется» от атак, она умеет активно подавлять местный иммунный ответ и перепрограммировать иммунные клетки, заставляя их обслуживать собственные злокачественные нужды.

«Диалог» между переродившейся, вышедшей из-под контроля клеткой с ее потомством (то есть будущей опухолью) и организмом развивается в несколько стадий, и если вначале инициатива почти всецело находится на стороне защитных сил организма, то в конце (в случае развития болезни) - переходит на сторону опухоли. Несколько лет назад учеными-онкоиммунологами была сформулирована концепция «иммуноредактирования» (immunoediting ), описывающая основные этапы этого процесса (рис. 1) .

Рисунок 1. Иммуноредактирование (immunoediting ) в процессе развития злокачественной опухоли.

Первая стадия иммуноредактирования - процесс устранения (elimination ). Под действием внешних канцерогенных факторов или в результате мутаций нормальная клетка «трансформируется» - приобретает способность неограниченно делиться и не отвечать на регуляторные сигналы организма. Но при этом она, как правило, начинает синтезировать на своей поверхности особые «опухолевые антигены» и «сигналы опасности». Эти сигналы привлекают клетки иммунной системы, прежде всего макрофаги , натуральные киллеры и Т-клетки . В большинстве случаев они успешно уничтожают «испортившиеся» клетки, прерывая развитие опухоли. Однако иногда среди таких «предраковых» клеток оказывается несколько таких, у которых иммунореактивность - способность вызывать иммунный ответ - по каким-то причинам оказывается ослабленной, они синтезируют меньше опухолевых антигенов, хуже распознаются иммунной системой и, пережив первую волну иммунного ответа, продолжают делиться.

В этом случае взаимодействие опухоли с организмом выходит на вторую стадию, стадию равновесия (equilibrium ). Здесь иммунная система уже не может полностью уничтожить опухоль, но еще в состоянии эффективно ограничивать ее рост. В таком «равновесном» (и не обнаруживаемом обычными методами диагностики) состоянии микроопухоли могут существовать в организме годами. Однако такие затаившиеся опухоли не статичны - свойства составляющих их клеток постепенно меняются под действием мутаций и последующего отбора: преимущество среди делящихся опухолевых клеток получают такие, которые способны лучше противостоять иммунной системе, и в конце концов в опухоли появляются клетки-иммуносупрессоры . Они в состоянии не только пассивно избегать уничтожения, но и активно подавлять иммунный ответ. По сути, это эволюционный процесс, в котором организм невольно «выводит» именно тот вид рака, который его убьет.

Этот драматический момент знаменует собой переход опухоли к третьей стадии развития - избегания (escape ), - на которой опухоль уже малочувствительна к активности клеток иммунной системы, более того - обращает их активность себе на пользу. Она принимается расти и метастазировать. Именно такая опухоль обычно диагностируется медиками и изучается учеными - две предыдущие стадии протекают скрыто, и наши представления о них основаны главным образом на интерпретации целого ряда косвенных данных.

Дуализм иммунного ответа и его значение в канцерогенезе

Существует множество научных статей, описывающих, как иммунная система борется с опухолевыми клетками, но не меньшее количество публикаций демонстрирует, что присутствие клеток иммунной системы в ближайшем опухолевом окружении является негативным фактором, коррелирующим с ускоренным ростом и метастазированием рака , . В рамках концепции иммуноредактирования, описывающей, как изменяется характер иммунного ответа по мере развития опухоли, подобное двойственное поведение наших защитников получило, наконец, свое объяснение.

Мы рассмотрим некоторые механизмы того, как это происходит, на примере макрофагов. Похожие приемы опухоль использует и для того, чтобы обманывать другие клетки врожденного и приобретенного иммунитета.

Макрофаги - «клетки-воины» и «клетки-целители»

Макрофаги, пожалуй, самые знаменитые клетки врожденного иммунитета - именно с изучения их способностей к фагоцитозу Мечниковым и началась классическая клеточная иммунология. В организме млекопитающих макрофаги - боевой авангард: первыми обнаруживая врага, они не только пытаются уничтожить его собственными силами, но также привлекают к месту сражения другие клетки иммунной системы, активируя их. А после уничтожения чужеродных агентов принимаются активно участвовать в ликвидации причиненных повреждений, вырабатывая факторы, способствующие заживлению ран. Эту двойственную природу макрофагов опухоли используют себе на пользу.

В зависимости от преобладающей активности различают две группы макрофагов: М1 и М2. М1-макрофаги (их еще называют классически активированными макрофагами) - «воины» - отвечают за уничтожение чужеродных агентов (в том числе и опухолевых клеток), как напрямую, так и за счет привлечения и активации других клеток иммунной системы (например, Т-киллеров). М2 макрофаги - «целители» - ускоряют регенерацию тканей и обеспечивают заживление ран , .

Присутствие в опухоли большого количества М1-макрофагов тормозит ее рост , а в некоторых случаях может вызвать даже практически полную ремиссию (уничтожение). И наоборот: М2-макрофаги выделяют молекулы - факторы роста, которые дополнительно стимулируют деление опухолевых клеток, то есть благоприятствуют развитию злокачественного образования. Экспериментально было показано, что в опухолевом окружении обычно преобладают именно М2-клетки («целители»). Хуже того: под действием веществ, выделяемых опухолевыми клетками, активные М1-макрофаги «перепрограммируются» в М2-тип , перестают синтезировать антиопухолевые цитокины, такие как интерлейкин-12 (IL12) или фактор некроза опухолей (TNF) и начинают выделять в окружающую среду молекулы, ускоряющие рост опухоли и прорастание кровеносных сосудов, которые будут обеспечивать ее питание, например фактор роста опухолей (TGFb) и фактор роста сосудов (VGF). Они перестают привлекать и инициировать другие клетки иммунной системы и начинают блокировать местный (противоопухолевый) иммунный ответ (рис. 2).

Рисунок 2. М1- и М2-макрофаги: их взаимодействие с опухолью и другими клетками иммунной системы.

Ключевую роль в этом перепрограммировании играют белки семейства NF-kB . Эти белки являются транскрипционными факторами, контролирующими активность множества генов, необходимых для М1 активации макрофагов. Наиболее важные представители этого семейства - р65 и р50, вместе образующие гетеродимер р65/р50, который в макрофагах активирует множество генов, связанных с острым воспалительным ответом, таких как TNF, многие интерлейкины, хемокины и цитокины. Экспрессия этих генов привлекает все новые и новые иммунные клетки, «подсвечивая» для них район воспаления. В то же время другой гомодимер семейства NF-kB - р50/р50 - обладает противоположной активностью: связываясь с теми же самыми промоторами, он блокирует их экспрессию, снижая градус воспаления.

И та, и другая активность NF-kB транскрипционных факторов очень важна, но еще важнее равновесие между ними. Было показано, что опухоли целенаправленно выделяют вещества, которые нарушают синтез p65 белка в макрофагах и стимулируют накопление ингибиторного комплекса р50/р50 . Таким способом (помимо еще ряда других) опухоль превращает агрессивных М1-макрофагов в невольных пособников своего собственного развития: М2-тип макрофагов, воспринимая опухоль как поврежденный участок ткани, включают программу восстановления, однако секретируемые ими факторы роста только добавляют ресурсы для роста опухоли. На этом цикл замыкается - растущая опухоль привлекает новые макрофаги, которые перепрограммируются и стимулируют ее рост вместо уничтожения.

Реактивация иммунного ответа - актуальное направление антираковой терапии

Таким образом, в ближайшем окружении опухолей присутствует сложная смесь молекул: как активирующих, так и ингибирующих иммунный ответ. Перспективы развития опухоли (а значит, перспективы выживания организма) зависят от баланса ингредиентов этого «коктейля». Если будут преобладать иммуноактиваторы - значит, опухоль не справилась с задачей и будет уничтожена или ее рост сильно затормозится. Если же преобладают иммуносупрессорные молекулы - это значит, что опухоль смогла подобрать ключ и начнет быстро прогрессировать. Понимая механизмы, которые позволяют опухолям подавлять наш иммунитет, мы сможем разработать контрмеры и сдвинуть баланс в сторону уничтожения опухолей .

Как показывают эксперименты, «перепрограммирование» макрофагов (и других клеток иммунной системы) обратимо. Поэтому одним из перспективных направлений онко-иммунологии на сегодняшний день является идея «реактивации» собственных клеток иммунной системы пациента с целью усиления эффективности других методов лечения. Для некоторых разновидностей опухолей (например, меланом) это позволяет добиться впечатляющих результатов. Другой пример, обнаруженный группой Меджитова , - обычный лактат, молекула, которая производится при недостатке кислорода в быстрорастущих опухолях за счет эффекта Варбурга . Эта простая молекула стимулирует перепрограммирование макрофагов, заставляя их поддерживать рост опухоли. Лактат транспортируется внутрь макрофагов через мембранные каналы, и потенциальная терапия заключается в блокировке этих каналов.

Фагоцитоз -- процесс, при котором специально предназначенные для этого клетки крови и тканей организма (фагоциты) захватывают и переваривают твердые частицы. Открытие фагоцитоза принадлежит И. И. Мечникову. Он осуществляется двумя разновидностями клеток: циркулирующими в крови зернистыми лейкоцитами (гранулоцитами) и тканевыми макрофагами. У животных фагоцитировать могут также ооциты, плацентные клетки, клетки, выстилающие полость тела, пигментный эпителий сетчатки глаза.

Механизм фагоцитоза однотипен и включает 8 последовательных фаз: 1) хемотаксис (направленное движение фагоцита к объекту);

2) адгезия (прикрепление к объекту);

3) активация мембраны (актин-миозиновой системы фагоцита);

4) начало собственно фагоцитоза, связанное с образованием вокруг поглощаемой частицы псевдоподий;

5) образование фагосомы (поглощаемая частица оказывается заключенной в вакуоль благодаря надвиганию на нее плазматической мембраны фагоцита подобно застежке-молнии;

6) слияние фагосомы с лизосомами;

7) уничтожение и переваривание;

8) выброс продуктов деградации из клетки.

Фагоцитозу часто предшествует процесс опсонизации (от греч. opsoniazo -- снабжать пищей, питать) объекта. Объектом является клетка, которая несет чужеродную информацию. Инициатором этого процесса является образование на поверхности клетки комплекса антиген-антитело. Антитела, локализуясь на поверхности чужеродной клетки, стимулируют активацию и присоединение к ним белков системы комплемента. Образующийся комплекс действует как активатор остальных стадий фагоцитоза.

Более детально этапы фагоцитоза выглядят следующим образом:

1. Хемотаксис. Чужеродные клетки (опсонизированные или неопсонизированные) посылают в окружающую среду хемотаксические сигналы, в направлении которых начинает двигаться фагоцит. Ранее других клеток в очаг воспаления мигрируют нейтрофилы, позже - макрофаги.

2. Адгезия фагоцитов к объекту. Обусловлена наличием на поверхности фагоцитов рецепторов для молекул, представленных на поверхности объекта (собственных или связавшихся с ним). Акт адгезии включает две фазы: распознавание чужеродного (специфический процесс) и прикрепление, или собственно адгезию (неспецифический процесс). В случае если отсутствует предварительное специфическое распознавание чужеродных клеток, адгезия фагоцитирующей клетки к объекту фагоцитоза происходит крайне медленно.

3. Активация мембраны. На этой стадии осуществляется подготовка объекта к погружению. Происходит активация протеинкиназы С, выход ионов кальция из внутриклеточных депо. Большое значение играют переходы золь-гель в системе клеточных коллоидов и актино-миозиновые перестройки.

4. Погружение. Происходит обволакивание объекта. В процессе фагоцитоза плазматическая мембрана макрофага при помощи образованных ею выступающих складок захватывает объект фагоцитоза и обволакивает его.

5. Образование фагосомы. Происходит замыкание мембраны, погружение объекта с частью мембраны фагоцита внутрь клетки. Образующаяся при этом небольшая вакуоль называется фагосомой.

6. Образование фаголизосомы. Слияние фагосомы с лизосомами, в результате чего образуются оптимальные условия для бактериолиза и расщепления убитой клетки.

7. Киллинг и расщепление. В фагосоме захваченная чужеродная клетка гибнет. Для осуществления киллинга макрофаг продуцирует и секретирует в фагосому реакционноспособные производные кислорода. Основные вещества, участвующие в бактериолизе: пероксид водорода, продукты азотного метаболизма, лизоцим и др. Процесс разрушения бактериальных клеток завершается благодаря активности протеаз, нуклеаз, липаз и других ферментов.

Переваривание захваченного и убитого материала - завершающий этап фагоцитоза. Для этого с фагосомой, содержащей объект фагоцитоза, объединяются лизосомы, которые содержат более 25 различных ферментов, в число которых входит большое количество гидролитических энзимов. В фагосоме происходит активация всех этих ферментов, так называемый метаболический взрыв, в результате которого фагоцитированный объект переваривается.

8. Выброс продуктов деградации.

Фагоцитоз может быть:

ѕ завершенным (киллинг и переваривание прошло успешно);

ѕ незавершенным (для ряда патогенов фагоцитоз является необходимой ступенью их жизненного цикла, например, у микобактерий и гонококков).

Изучение показателей фагоцитоза имеет значение в комплексном анализе и диагностике иммунодефицитных состояний: часто рецидивирующих гнойно-воспалительных процессах, длительно не заживающих ран, склонности к послеоперационным осложнениям.

Для исследования фагоцитарной функции используют:

ѕ подсчет абсолютного числа фагоцитов (нейтрофилов и моноцитов);

ѕ оценку интенсивности поглощения микробов фагоцитами;

ѕ определение способности фагоцитирующих клеток переваривать захваченные микробы.

Наиболее информативным для оценки активности фагоцитоза считают фагоцитарное число, количество активных фагоцитов и индекс завершенности фагоцитоза.

Наиболее распространенным методом количественного определения и характеристики морфологических дефектов нейтрофилов является лейкограмма и цитологические исследования с использованием световой и электронной микроскопии.

Для определения хемотаксической активности нейтрофилов применяют метод исследования миграции лейкоцитов с использованием камеры Бойдена. Метод основан на разделении микропористым фильтром в растворе двух реагирующих компонентов: нейтрофилов и хемотаксических агентов (например, C5a), которые помещаются в нижнюю камеру и создают концентрационный градиент. Помещенные в верхнюю камеру нейтрофилы мигрируют вдоль градиента и собираются на нижней поверхности фильтра. После стандартной инкубации фильтры извлекают, окрашивают и подсчитывают количество клеток. Метод довольно прост и отличается весьма высокой воспроизводимостью. Этот же принцип лежит в основе метода клеточной миграции под агарозным гелем, который используется для определения хемотаксического индекса.

Для фагоцитарного числа норма -- 5-10 микробных частиц. Это среднее количество микробов, поглощенных одним нейтрофилом крови. Характеризует поглотительную способность нейтрофилов. Определяется путем подсчета количества поглощенных бактерий одной клеткой после инкубации клеток пациента со стандартными препаратами St.aureus или E.coli и окраски полученных мазков. Модификацией этого теста является метод определения бактерицидной активности, при котором отмытая суспензия клеток инкубируется с бактериальной суспензией, затем смесь наносится на поверхность кровяного агара и через определенное время подсчитывается количество выросших бактериальных колоний. Оба метода требуют стандартизации для использования в каждой конкретной лаборатории и сведений об антибиотикотерапии, которая может быть причиной недостоверных результатов или ошибок в их интерпретации.

Фагоцитарная емкость крови в норме -- 12,5-25х10 9 на 1 л крови. Это количество микробов, которое могут поглотить нейтрофилы 1 л крови.

Фагоцитарный показатель в норме 65-95%. Это относительное количество нейтрофилов (выраженное в процентах), участвующих в фагоцитозе.

Количество активных фагоцитов в норме -- 1,6-5,0х10 9 в 1 л крови. Это абсолютное количество фагоцитирующих нейтрофилов в 1 л крови.

Индекс завершенности фагоцитоза в норме -- более 1. Он отражает переваривающую способность фагоцитов.

Фагоцитарная активность нейтрофилов обычно повышается в начале развития воспалительного процесса. Ее снижение ведет к хронизации воспалительного процесса и поддержанию аутоиммунного процесса, так как при этом нарушается функция разрушения и выведения иммунных комплексов из организма.

Спонтанный тест с НСТ(нитросиний тетразолий) - в норме у взрослых количество НСТ-положительных нейтрофилов составляет до 10%. Этот тест позволяет оценить состояние кислородзависимого механизма бактерицидности фагоцитов (гранулоцитов) крови in vitro. Он характеризует состояние и степень активации внутриклеточной НАДФ-Н-оксидазной антибактериальной системы. Феномен респираторного (или метаболического) взрыва связан со значительным увеличением кислорода, поглощаемого лейкоцитами при фагоцитозе, в результате чего происходит образование супероксидного радикала (О 3-) и перекиси водорода. Все эти соединения обладают микробоцидными свойствами, и их идентификация представляет собой важный этап в оценке функциональной активности фагоцитарных клеток.

Показатели НСТ-теста повышаются в начальный период острых бактериальных инфекций, тогда как при подостром и хроническом течении инфекционного процесса они снижаются.

Снижение спонтанного теста с НСТ характерно для хронизации воспалительного процесса, врожденных дефектов фагоцитарной системы, иммунодефицитов, злокачественных новообразований, тяжелых ожогов, травм, недостаточности питания, лечения некоторыми лекарственными препаратами, воздействия ионизирующего излучения.

Повышение спонтанного теста с НСТ отмечают при антигенном раздражении вследствие острого бактериального воспаления, лейкоцитозе, усилении антителозависимой цитотоксичности фагоцитов, аутоаллергических заболеваниях, аллергии.

Активированный тест с НСТ используется для определения фагоцитарной метаболической (кислородо-зависимой) активности нейтрофилов. Тест включает в себя инкубацию нейтрофилов с НСТ in vitro, и по формированию нерастворимых окрашенных зерен формазана можно судить о восстановлении НСТ супероксидным радикалом, образующимся при активации фагоцитов. Отсутствие осадка свидетельствует о неспособности клеточной популяции фагоцитов к метаболизму.

В норме у взрослого человека количество НСТ-положительных нейтрофилов составляет 40-80%. Снижение показателей активированного НСТ-теста нейтрофилов ниже 40% и моноцитов ниже 87% свидетельствует о недостаточности фагоцитоза.

Авторы

Сарбаева Н.Н., Пономарева Ю.В., Милякова М.Н.

В соответствии с «М1/М2» парадигмой выделяют два подтипа активированных макрофагов – классически активированные (М1) и альтернативно активированные (М2), которые экспрессируют различные рецепторы, цитокины, хемокины, факторы роста и эффекторные молекулы. Однако данные последних лет указывают на то, что в ответ на изменение сигналов микроокружения, макрофаги могут проявлять уникальные свойства, не позволяющие отнести их ни к одному из этих подтипов.

Макрофаги играют главную роль в реакции организма на имплантируемый материал – катетеры, стенты, эндопротезы, дентальные имплантаты. Макрофаги фагоцитируют частицы износа поверхности суставных протезов, инициируют воспаление в зоне протезирования и остеолиз, управляют процессами образования фиброзной капсулы вокруг инородных тел. Представлен краткий обзор факторов, вызывающих миграцию, адгезию и активацию макрофагов, анализ их функциональных характеристик на различных поверхностях, включая биодеградирующие и не деградирующие материалы in vivo и in vitro.

Введение

Современную медицину в настоящее время невозможно представить без применения имплантируемых изделий, устанавливаемых в организм на различные сроки с целью восстановления анатомии и функции утраченных или пораженных патологическим процессом органов и тканей. Биосовместимость синтетических материалов или тканеинженерных конструкций является основной проблемой, влияющей на результаты таких имплантаций. Реакция на протезирующий материал развивается в следующей последовательности: альтерация тканей, инфильтрация клетками острого, затем хронического воспаления с формированием грануляционной ткани и фиброзной капсулы. Степень выраженности этих реакций определяет биосовместимость имплантируемого изделия. Макрофаги играют главную роль в реакции организма на устанавливаемый материал – катетеры, стенты, эндопротезы, дентальные имплантаты и др.

Морфология макрофагов

Макрофаги – это гетерогенная клеточная популяция. Макрофаг имеет неправильную, звездчатую, многоотростчатую форму, складки и микроворсинки на поверхности клеток, обилие эндоцитозных микровезикул, первичных и вторичных лизосом. Округлое или эллипсовидное ядро расположено центрально, гетерохроматин локализован под ядерной оболочной. Структурные особенности клетки во многом зависят от ее органной и тканевой принадлежности, а также от функционального статуса. Так, для клеток Купфера характерен гликокаликс, альвеолярные макрофаги содержат ламеллярные (сурфактантные) тельца, хорошо развитый комплекс Гольджи, шероховатый эндоплазматический ретикулум и множество митохондрий, в то время как в клетках микроглии митохондрии немногочисленны. В цитоплазме перитонеальных и альвеолярных макрофагов присутствует большое количество липидных телец, содержащих субстраты и ферменты генерации простагландинов . Адгезирующиеся и движущиеся макрофаги формируют короткоживущие, содержащие актин структуры – подосомы – в виде плотной центральной части с радиально отходящими от них микрофиламентами. Подосомы могут сливаться, формируя структуры более высокого порядка – розетки, которые эффективно разрушают белки подлежащего внеклеточного матрикса .

Функции макрофагов

Макрофаги фагоцитируют чужеродный материал и клеточно-тканевый детрит, стимулируют и регулируют иммунный ответ, индуцируют воспалительную реакцию, участвуют в репаративных процессах и обмене компонентов внеклеточного матрикса. Многообразие осуществляемых функций объясняет экспрессию этими клетками большого числа рецепторов, связанных с плазматической мембраной, внутриклеточных и секретируемых. Рецепторы врожденного иммунитета РRR (pattern-recognition receptors, образ-распознающие рецепторы) активируются широким спектром лигандов (исключение – CD163), обеспечивая узнавание высоко консервативных структур большинства микроорганизмов, так называемых PAMP (pathogen-associated molecular patterns, патоген-ассоциированные образы) и схожих с ними эндогенных молекулярных структур DAMP (damage-associated molecular patterns), образующихся в результате повреждения и гибели клеток, модификации и денатурации белковых структур внеклеточного матрикса. Большинство из них опосредует эндоцитоз и элиминацию потенциально опасных эндогенных и экзогеннных агентов, однако вместе с тем, многие из них выполняют сигнальные функции, регулируя синтез провоспалительных медиаторов, способствуя адгезии и миграции макрофагов (табл.) .

На плазматической мембране моноцитов/макрофагов экспрессируются также специализированные рецепторы, связывающие один или несколько близких по строению лигандов: Fc-фрагмент иммуноглобулина G, факторы роста, кортикостероиды, хемокины и цитокины, анафилотоксины и костимулирующие молекулы. Функции многих из этих рецепторов опосредованы не только связыванием лигандов, но и взаимодействием с другими рецепторами (C5aR-TLR, MARCO-TLR, FcγR-TLR), что обеспечивает тонкую регуляцию синтеза прои противовоспалительных медиаторов . Особенностью макрофагальной рецепторной системы является наличие рецепторов-ловушек провоспалительных цитокинов и хемокинов (Il-1R2 на М2а макрофагах; CCR2 и CCR5 на М2с макрофагах), активация которых блокирует внутриклеточную передачу соответствующего провоспалительного сигнала. Экспрессия клеточных рецепторов видо-, органо- и тканеспецифична и зависит от функционального статуса макрофагов. Детально изученные клеточные рецепторы макрофага приведены в таблице.

Миграция моноцитов/макрофагов

Тканевые макрофаги происходят преимущественно из моноцитов крови, которые мигрируют в ткани и дифференцируются в различные популяции. Миграция макрофагов направляется хемокинами: ССL2 CCL3, CCL4, CCL5, CCL7, CCL8, CCL13, ССL15, ССL19, CXCL10, CXCL12; факторами роста VEGF, PDGF, TGF-b; фрагментами системы комплемента; гистамином; белками гранул полиморфноядерных лейкоцитов (ПМЯЛ); фосфолипидами и их производными.

На начальных этапах воспалительного ответа ПМЯЛ организуют и модифицируют сеть хемокинов путем секреции CCL3, CCL4 и CCL19 и выброса преформированных в гранулы азуросидина, белка LL37, катепсина G, дефензинов (НNP 1-3) и протеиназы 3, которые обеспечивают адгезию моноцитов к эндотелию, тем самым проявляя свойства хемоаттрактантов. Кроме того, белки гранул ПМЯЛ индуцируют секрецию хемокинов и другими клетками: азуросидин стимулирует продукцию CCL3 макрофагами, а протеиназа-3 и HNP-1 вызывают синтез ССL2 эндотелием. Протеиназы ПМЯЛ способны активировать многие хемокины белковой природы и их рецепторы. Так, протеолиз ССL15 катепсином G многократно усиливает его аттрактивные свойства. Апоптозные нейтрофилы привлекают моноциты через сигналы, предположительно, опосредованные лизофосфатидилхолином .

Любое повреждение тканей приводит к аккумуляции макрофагов. В зоне травмы сосудов кровяной сгусток и тромбоциты выделяют TGF-β, PDGF, CXCL4, лейкотриен B4 и IL-1, обладающие выраженными хемоаттрактивными свойствами в отношении моноцитов/макрофагов . Поврежденные ткани являются источником так называемых аларминов, к которым относятся компоненты разрушенного внеклеточного матрикса, белки теплового шока, амфотерин, АТФ, мочевая кислота, IL-1a, IL-33, митохондриальная ДНК клеточного детрита и др. Они стимулируют оставшиеся жизнеспособными клетки поврежденных тканей и эндотелий кровеносных сосудов к синтезу хемокинов, некоторые из них являются прямыми факторами хемотаксиса . Инфицирование тканей приводит к появлению так называемых патогенассоциированных молекул: липополисахаридов, углеводов клеточной стенки и нуклеиновых кислот бактерий. Связывание их мембранными и внутриклеточными рецепторами макрофагов запускает процесс экспрессии генов хемокинов, обеспечивающих дополнительное рекрутирование фагоцитов .

Активация макрофагов

Макрофаги активируются под действием множества сигнальных молекул, вызывающих их дифференцировку в различные функциональные типы (рис. 1). Классически активированные макрофаги (М1 фенотип) стимулируются IFNg, а также IFNg совместно с LPS и TNF. Их основные функции – уничтожение патогенных микроорганизмов и индукция воспалительной реакции. Поляризация в М1 направлении сопровождается секрецией провоспалительных медиаторов. Они экспрессируют рецепторы к IL-1 – IL-1R1, TLR и костимулирующие молекулы, активация которых обеспечивает амплификацию воспалительного ответа. Наряду с провоспалительными цитокинами макрофаги секретируют и антивоспалительный цитокин – IL-10, при характерном высоком соотношении IL-12/IL-10 . Бактерицидные свойства М1 макрофагов определяются продукцией свободных радикалов азота и кислорода, генерируемых iNOS и НАДФН-оксидазным комплексом . Являясь эффекторными клетками в реакции организма на бактериальную инфекцию, они, в то же время, подавляют адаптивный иммунный ответ за счет торможения пролиферации стимулированных Т-клеток. Секретируемый М1 макрофагами IL-12 играет ключевую роль в Тх1 поляризации, а IL-1b и IL-23 направляют иммунный ответ по Тх17 пути. . Исследования последних лет показали, что М1 макрофаги помимо провоспалительных проявляют репаративные свойства: секретируют VEGF, стимулирующий ангиогенез и образование грануляционной ткани .

Альтернативная активация макрофагов (М2 фенотип) наблюдается при стимуляции их интерлейкинами, глюкокортикоидами, иммунными комплексами, агонистами TLR и др. Они мигрируют в зоны инвазии гельминтами, скапливаются в локусах фиброза, в заживающих ранах кожи и неопластических образованиях. М2 макрофаги способны к активной пролиферации in situ. Они проявляют большую по сравнению с М1 макрофагами способность к фагоцитозу и экспрессируют большее количество связанных с ним рецепторов: СD36 – рецептор скавенджер апоптозных клеток; CD206 – маннозный рeцептор; CD301 – рецептор остатков галактозы и N-ацетилглюкозамина; СD163 – рецептор к гемоглобин-гаптоглобиновому комплексу. Для макрофагов этого типа характерно низкое отношение IL-12/IL-10 .

Альтернативно активированные макрофаги подразделяют на подтипы: М2а, М2b и М2с. Примером М2а фенотипа макрофагов являются клетки, скапливающиеся вокруг личинок гельминтов и простейших, аллергены которых индуцируют иммунный Тх2 ответ, сопровождающийся продукцией IL-4 и IL-13 . Они не секретируют значительные количества провоспалительных цитокинов, синтезируют особый спектр хемокинов и мембранных рецепторов . Считается, что для них характерен синтез IL-10 , однако in vitro макрофаги не всегда продуцируют этот цитокин и могут проявлять высокую транскрипционную активность генов IL-12 и IL-6 . Важной характеристикой этой популяции является синтез антагониста рецептора IL-1 (IL-1ra), который, связываясь с IL-1, блокирует его провоспалительное действие .

М2а макрофаги подавляют воспалительную реакцию, блокируя формирование М1 популяции через цитокины рекрутированных ими Тх2-лимфоцитов, либо за счет вырабатываемого хемокина ССL17, который совместно с IL-10 ингибирует дифференцировку макрофагов в М1 направлении . Клетки М2а фенотипа считают типичными репаративными макрофагами. Синтезируемый ими хемокин CCL2 является хемоаттрактантом предшественников миофибробластов – фиброцитов , они секретируют факторы, обеспечивающие ремоделирование соединительной ткани .

Поляризация в направлении М2b осуществляется стимуляцией рецептора к Fcg вместе с агонистами ТLR и лигандами к рецептору IL-1. Функционально они близки к М1 макрофагам, продуцируют провоспалительные медиаторы и монооксид азота (NO), но вместе с тем для них характерен высокий уровень синтеза IL-10 и сниженная продукция IL-12 . М2b макрофаги усиливают продукцию антител. Синтезируемый ими хемокин ССL1 способствует поляризации лимфоцитов в Тх2 направлении . М2с макрофаги обладают супрессивными свойствами – тормозят активацию и пролиферацию СD4+-лимфоцитов, вызванную антигенной стимуляцией и способствуют элиминации активированных Т-клеток . In vitro М2с подтип получают стимуляцией мононуклеарных фагоцитов глюкокортикоидами, IL-10, TGF-β, простагландином Е2 и др. Они не обладают бактерицидной активностью, продуцируют незначительное количество цитокинов, секретируют факторы роста и некоторые хемокины . М2с макрофаги экспрессируют рецепторы фагоцитоза и многих провоспалительных хемокинов, которые, предположительно, служат не для возбуждения соответствующих сигналов, а являются ловушками провоспалительных медиаторов, блокируя их функции .

Характер активации макрофагов не является жестко детерминированным и стабильным. Показана возможность трансформации М1 фенотипа в М2 при изменении спектра стимулирующих цитокинов и вследствие эффероцитоза. После поглощения апоптозных клеток макрофаги резко снижают синтез и секрецию медиаторов воспаления ССL2, ССL3, CXCL1, CXCL 2, TNF-a, MG-CSF, IL-1b, IL-8 и многократно усиливают продукцию TGF-b . Обратная трансформация М2 фенотипа в М1 предполагается при развитии ожирения.

Многие авторы ставят под сомнение существование в организме двух четко различимых популяций макрофагов М1 и М2. Сочетание признаков классической и альтернативной активации характерно для макрофагов кожных ран человека. Так, наряду с типичными для M1 макрофагов цитокинами TNF-a и IL-12, они демонстрируют синтез маркеров М2 макрофагов: IL-10, СD206, СD163, CD36 и рецепторов к IL-4 . Отличный от М1/М2 тип макрофагов с выраженной фибринолитической активностью обнаружен в печени мышей на модели обратимого фиброза и в ткани печени человека при циррозе. В них экспрессируются гены аргиназы 1, маннозных рецепторов и IGF, они секретируют ММП-9, ММП-12, проявляют выраженную способность к пролиферации и фагоцитозу, но не синтезируют IL-10, IL-1ra, TGF-b . Особая популяция макрофагов формируется в селезенке мыши при инфицировании микобактериями. Они тормозят пролиферацию Т-лимфоцитов и секрецию ими как Тх1, так и Тх2 цитокинов, стимулируя поляризацию в Тх17. направлении. Супрессивные макрофаги обладают уникальным фенотипом – экспрессируют гены активные в М1 макрофагах – IL-12, IL-1b, IL-6, TNF-a, iNOS и одновременно гены CD163, IL-10, маннозных рецепторов и других маркеров М2 макрофагов .

Эти исследования наглядно показывают, что формирующиеся в естественных условиях популяции макрофагов значительно отличаются от получаемых in vitro М1 и М2 популяций. Воспринимая множество активирующих сигналов, макрофаг отвечает «по запросу», секретируя медиаторы адекватно изменению окружающей среды, поэтому в каждом конкретном случае формируется свой фенотип, иногда, возможно, даже уникальный.

Реакция макрофагов на чужеродный материал

Контакт макрофагов с чужеродным материалом, как в виде мелких частиц, так и в виде обширных поверхностей, приводит к их активации. Одной из серьезных проблем в травматологии и ортопедии, связанной с реакцией на инородное тело, является развитие нестабильности сустава после эндопротезирования, которая выявляется, по некоторым данным, у 25–60% больных в первые годы после выполненной операции и не имеет тенденции к снижению .

Поверхность ортопедических протезов изнашивается с образованием частиц, инфильтрирующих мягкие ткани. Химические свойства материала определяют возможность опсонизации частиц белками плазмы крови и тип поверхностных рецепторов, инициирующих фагоцитоз. Так, полиэтилен, активирующий комплемент, подвергается опсонизации и «узнается» рецептором к комплементу СR3, в то время как частицы титана поглощаются клеткой через опсонин-независимый рецептор MARCO. Фагоцитоз макрофагами частиц металла, синтетических полимеров, керамики, гидроксиапатита запускает процесс синтеза провоспалительных медиаторов и индуктора остеокластогенеза RANKL. Секретируемый макрофагами ССL3 вызывает миграцию остеокластов, а IL-1b, TNF-a, ССL5 и PGE2 стимулируют их дифференцировку и активацию. Остеокласты резорбируют кость в зоне протезирования, но новообразование костной ткани подавлено, поскольку корпускулярный материал ингибирует синтез коллагена, тормозит пролиферацию и дифференцировку остеобластов и индуцирует их апоптоз . Вызванный частицами износа воспалительный ответ считается основной причиной остеолиза.

Контакт тканей с материалом, который не может быть фагоцитирован, инициирует каскад событий, известный под названием реакции организма на инородное тело, или тканевой реакции. Она заключается в адсорбции белков плазмы, развитии воспалительного ответа, первоначально острого, впоследствии хронического, пролиферации миофибробластов и фибробластов и формировании фиброзной капсулы, отграничивающей инородное тело от окружающих тканей. Основными клетками персистирующего воспаления на границе материал/ткань являются макрофаги, его выраженность определяет степень фиброза в зоне контакта. Интерес к исследованию тканевой реакции связан в первую очередь с широким применением синтетических материалов в различных областях медицины .

Адсорбция белков плазмы крови является первой стадией взаимодействия имплантируемых материалов с тканями организма. Химический состав, свободная энергия, полярность поверхностных функциональных групп, степень гидрофильности поверхности определяют количество, состав и конформационные изменения в связываемых белках, являющихся матриксом для последующей адгезии клеток, в том числе макрофагов. Наиболее значимыми в этом плане являются фибриноген, IgG, белки системы комплемента, витронектин, фибронектин и альбумин.

Слой фибриногена быстро образуется на практически всех чужеродных материалах. На гидрофобных поверхностях фибриноген образует монослой из прочно связанного, частично денатурированного белка, эпитопы которого открыты для взаимодействия с клеточными рецепторами. На гидрофильных материалах фибриноген чаще осаждается в виде рыхлого мультислойного покрытия, причем наружные слои слабо или практически не подвергаются денатурации, оставляя сайты связывания недоступными для клеточных рецепторов макрофагов и тромбоцитов .

Многие синтетические полимеры обладают способностью к сорбции компонентов системы комплемента и ее активации с формированием С3-конвертазного комплекса. Генерируемые им фрагменты С3а, С5а являются хемоаттрактантами и активаторами фагоцитов, iC3b выполняет роль лиганда рецептора клеточной адгезии. Запуск каскада активации возможен как по классическому (опосредованному адсорбированными молекулами JgG), так и по альтернативному путям . Последний инициируется связыванием компонента С3 поверхностями, несущими функциональные группы, например – ОН-, вызывающими его гидролиз. Альтернативный путь может включаться также после классического пути или вместе с ним за счет работы С3-конвертазы классического пути, генерирующей фиксирующиеся на поверхностях фрагменты С3b – пускового фактора амплификационной петли. Однако сорбция и даже начавшийся гидролиз С3 не всегда приводят к возникновению амплификационного сигнала. Например, С3 сильно сорбируется поливинилпирролидоном, однако протеолиз его на этой поверхности слабо выражен. Слабо активируют комплемент фторированные поверхности, силикон и полистирен. Для клеточных реакций на чужеродных поверхностях значение имеет не только активация системы комплемента, но опосредованное ее фрагментами связывание других белков.

Роль альбумина заключается в его способности связывать белки системы комплемента . Oн не способствует адгезии макрофагов и, в отличие от фибриногена, не индуцирует синтез ими TNF-a . На имплантированных материалах обычно обнаруживают фибронектин и витронектин – белки богатые RGD-последовательностями (участками из аминокислот ARG-GLY-ASP).

В отношении витронектина неизвестно, адсорбируется ли он непосредственно на поверхности материала или входит в состав фиксированного на нем инактивированного мебранноатакующего комплекса комплемента. Значимость его для развития тканевой реакции состоит в том, что он обеспечивает наиболее прочную и длительную адгезию макрофагов. Взаимодействие макрофагов с субстратом обеспечивают клеточные рецепторы к белкам-интегринам (avβ3, a5β1, CR3), богатым RGDпоследовательностями (табл.). Блокада адгезии макрофагов растворимыми RGD-миметиками, либо удаление с их поверхности рецептора CR3 снижает интенсивность тканевой реакции, уменьшая толщину формирующейся фиброзной капсулы .

Прикрепившиеся макрофаги сливаются, образуя многоядерные клетки (гигантские клетки инородных тел – ГКИТ). Индукторами этого процесса являются IFNg, IL-1, IL-2, IL-3, IL-4, IL-13 и GM-CSF, стимулирующие экспрессию маннозных рецепторов, которые играют важную роль в слиянии клеток . ГКИТ функционируют как макрофаги – обладают способностью к фагоцитозу, генерации радикалов кислорода и азота, синтезу цитокинов и факторов роста. Характер синтетической активности этих клеток зависит, по-видимому, от их «возраста»: на ранних этапах развития тканевой реакции экспрессируются IL-1a, TNF-a, а позднее происходит переключение на антивоспалительные и профиброгеннные медиаторы – IL-4, IL-10, IL-13, TGF-β .

Реакция макрофагов на чужеродные материалы исследуется в различных условиях in vitro и in vivo. В экспериментах in vitro принимается во внимание интенсивность их адгезии на изучаемой поверхности и образования ГКИТ, число «включающихся» генов, количество синтезируемых и секретируемых ферментов, цитокинов и хемокинов. В монокультурах мононуклеарных фагоцитов, адгезированных на различных поверхностях, происходит не поляризация их в М1 и М2 направлениях, а формирование макрофагов смешанного типа, секретирующих как про-, так и противовоспалительные медиаторы со сдвигом в сторону последних при длительном культивировании . Отсутствие «золотого стандарта» – стабильного контрольного материала, хорошо зарекомендовавшего себя при имплантации в живой организм, с которым можно было бы сравнивать тестируемые материалы, а также использование не стандартизированных клеточных линий макрофагов, разные способы их дифференцировки затрудняют сравнение результатов работ разных авторов. Тем не менее, исследования in vitro дают возможность судить о цитотоксичности материалов, определить реакцию макрофагов на их химическую модификацию. Ценные сведения были получены при изучении активации макрофагов на поверхности различных коллагенов – нативных и химически измененных. Нативные коллагены индуцируют in vitro синтез макрофагами сигнальных молекул, как стимулирующих воспалительный ответ (TNF-a, IL-6, IL-8, IL-1β, IL-12, CCL2), так и подавляющих его (IL-1ra, IL-10), а также матриксных металлопротеаз и их ингибиторов. . Провоспалительные свойства таких материалов зависят от способа децеллюляризации и стерилизации исходного сырья, в значительной степени изменяющих его характеристики. Полученные по разным технологиям коллагеновые эндопротезы из нативного коллагена по способности вызывать экспрессию провоспалительных цитокинов варьируют от практически инертных до высокоактивных . Прошивка коллагена различными химическими веществами изменяет характер реакции макрофагов. Обработка глутаральдегидом приводит к цитотоксичности, проявляющейся в повреждении цитоплазматической мембраны, нарушении адгезии, снижении жизнеспособности макрофагов. При этом продукция ими IL-6, TNF-a повышена, а синтез IL-1ra подавлен в сравнении с макрофагами, адгезированными нативным и прошитым карбодиимидом коллагеном. Обработка карбодиимидом обеспечивает оптимальные свойства коллагену, который не обладает цитотоксичностью, не вызывает существенного повышения секреции провоспалительных цитокинов и металлопротеаз и не подавляет синтез IL-10 и IL-1ra в сравнении с нативным .

С целью снижения тканевой реакции в коллагеновые материалы вводят компоненты межклеточного матрикса, нативные или модифицированные. J. Kajahn с соавт. (2012) создали in vitro имитацию провоспалительного микроокружения эндопротезов, что способствовало дифференцировке моноцитов в М1 направлении . В этих же условиях дополнительно сульфатированная гиалуроновая кислота, введенная в коллагеновый субстрат, снизила секрецию макрофагами провоспалительных цитокинов и повысила продукцию IL-10. По мнению авторов это свидетельствует о М2 поляризации макрофагов, способствующих регенерации и восстановлению функциональных свойств окружающих тканей. Реакция макрофагов на медленно деградируемые и стабильные материалы in vitro в целом однородна и аналогична реакции на биоматериалы, хотя некоторая специфичность ответа все же заметна. Титан, полиуретан, полиметилметакрилат, политетрафторэтилен являются слабыми индукторами медиаторов воспаления, хотя титан способствует более высокой секреции TNF-a и IL-10, чем полиуретан, а особенность полипропилена заключается в стимулировании продукции профиброгенного хемокина ССL18 . PEG, предлагаемый в качестве субстрата для переноса клеток, вызывает резкое, но быстро проходящее усиление экспрессии IL-1β, TNF-a, IL-12, однако его сополимеризация с олигопептидом клеточной адгезии улучшает биосовместимость материала, в значительной степени снижая экспрессию провоспалительных цитокинов .

Реакция макрофагов на различные материалы in vitro не в полной мере характеризует их поведение в организме. В монокультурах отсутствуют факторы взаимодействия с другими клеточными популяциями и не учитывается фенотипический полиморфизм – в естественных условиях к имплантату мигрируют не только моноцитарные предшественники, но и зрелые тканевые макрофаги, ответ которых может существенно отличаться от рекрутируемых из крови. Исследование секреторной активности макрофагов, окружающих инсталлированные в ткани животных и человека эндопротезы, представляет большую сложность. Основным методом, позволяющим характеризовать макрофаги на основании парадигмы М1-М2 in situ, стали данные иммуноцитохимии маркерных белков iNOS, CD206, CD163, CD80, CD86. Постулируется, что наличие этих маркеров у макрофагов in vivo определяет их поляризацию в М1 и М2 направлениях с синтезом соответствующих спектров цито- и хемокинов, но, учитывая возможность существования макрофагов смешанного типа , такая характеристика не вполне корректна.

Тем не менее, эксперименты in vivo дают возможность проследить судьбу имплантированного материала и динамику реакции макрофагов в течение длительного периода, что особенно важно для пожизненно установленных эндопротезов и устройств. Наиболее изученными в данном аспекте являются деградирующие биоматериалы на основе коллагена. Первыми клетками воспаления, мигрирующими к таким материалам, являются ПМЯЛ, однако этот эффект транзиторный и популяция второй волны представлена макрофагами . Их реакция зависит от физико-химических свойств коллагена. Чем жестче химическая обработка, тем больше отличается коллаген от нативного, тем более «чужим» он становится для макрофага и тем сильнее выражена тканевая реакция. Установленные между мышечными слоями брюшной стенки крысы фрагменты имплантатов из медленно деградирующего прошитого коллагена способствуют формированию ГКИТ и инкапсуляции материала. Мигрирующие макрофаги, судя по экспрессии рецепторов ССR7 и CD206, можно отнести в ряде случаев к М1 фенотипу, но во многих случаях определить их принадлежность к известным фенотипам не представляется возможным.

С течением времени вокруг имплантата появляются М2 макрофаги, которые располагаются преимущественно в фиброзной капсуле . Эндопротезы из непрошитого коллагена свиньи, человека и быка и прошитый диизоцианатом коллаген овцы , быстро разрушающиеся в организме крысы, стимулируют новообразование полноценной соединительной и мышечной тканей. Они не способствуют образованию ГКИТ и не инкапсулируются. Часть мононуклеарных фагоцитов, скапливающихся на границе ткань/материал, не имеет маркеров М1/М2 фенотипа, часть содержит оба маркера, а часть является М2 макрофагами. Субпопуляция М1 макрофагов на таких имплантатах отсутствует . Гистоморфометрический анализ показал положительную корреляцию между количеством макрофагов, несущих маркеры М2 фенотипа на ранних этапах развивающейся тканевой реакции, и показателями успешного ремоделирования тканей в зоне имплантации .

Тканевая реакция на недеградируемые материалы существует в течение всего времени присутствия их в организме . Ее интенсивность модулируется физико-химическими свойствами материалов: в ряду полиэстер, политетрафторэтилен, полипропилен – первый полимер вызывает максимально выраженное воспаление и слияние макрофагов, последний – минимальное, а выраженность фиброза для всех перечисленных материалов положительно коррелирует с количеством ГКИТ на поверхности синтетических полимеров . Несмотря на большое количество работ, в которых исследована воспалительная реакция на различные материалы, характеристики аккумулирующихся на них макрофагов изучены недостаточно. M.T. Wolf и соавт. (2014) показали, что на нитях и между узлами полипропиленовой сетки, имплантированной в брюшную стенку крысы, скапливаются преимущественно макрофаги с маркерами М1 фенотипа (СD86+CD206-) .

Нанесенный на полипропилен гель из межклеточного матрикса соединительной ткани снижает число М1 макрофагов и ГКИТ и одновременно тормозит рост микрососудов. Это явление хорошо согласуется с результатами работ, демонстрирующими экспрессию ангиогенных факторов М1 макрофагами ран и подавление васкулогенеза при их блокаде . О синтетической активности макрофагов, спектре их биологически активных молекул, обеспечивающих тканевую реакцию, известно мало. У мыши на периферии зоны имплантации нейлоновой сетки скапливаются макрофаги, секретирующие IL-6 и ССL2, IL-13 и TGF-β и в то же время в популяции клеток, в том числе и в ГКИТ, адгезированных на волокнах эндопротеза, экспрессируются IL-4, IL-10, IL-13 и TGF-β . IL-4 и IL-13 – мощные профиброгенные медиаторы, они не только поляризуют макрофаги в М2а направлении, способствуя продукции факторов роста, но и через индукцию экспрессии фибробластами TGF-β, стимулируют синтез ими коллагена. Профиброгенным эффектом обладают также IL-10 и CCL2, обеспечивающие хемотаксис предшественников миофибробластов – фиброцитов . Можно предположить, что именно макрофаги создают среду, способствующую развитию фиброза вокруг недеградирующих материалов.

Образование фиброзной ткани может оказывать как негативное, так и позитивное влияние на результаты лечения пациентов. В герниологической практике фиброзная трансформация тканей, связанная с имплантацией полипропиленового эндопротеза, является одной из основных проблем (рис. 2, собственные данные), которая на фоне нерациональной оперативной тактики в 15–20% случаев приводит к развитию рецидивов грыж различных локализаций .

В последние годы особенно интенсивно развиваются технологии дентальной имплантации, основанные на интеграции установленных конструкций за счет развития соединительной ткани (рис. 3, собственные данные). Несмотря на то, что фиброинтеграция имплантатов рядом специалистов признается как допустимый вариант, поиск новых материалов, способствующих процессам остеоинтеграции, продолжается .

В этой связи существенное значение приобретают изучение клеточных популяций в зоне протезирования, разработка методов и подходов к блокированию чрезмерной воспалительной реакции с исходом в фиброз и стимуляция репаративной регенерации в месте имплантации различных материалов.

Заключение

Макрофаги – полиморфная популяция клеток, фенотип которых определяется сигналами микроокружения. Они играют решающую роль в реакции организма на чужеродный материал, используемый для эндопротезирования, катетеризации, стентирования и др. видов лечения. Характер реакции и степень ее выраженности зависят как от размера имплантируемого материала, так и от его физикохимических свойств и могут иметь как положительное, так и отрицательное значения для организма пациента. Для деградируемых материалов на основе коллагена показана зависимость типа активации макрофагов и скорости регенерации соединительной ткани от способа обработки коллагенового сырья. Это открывает широкие возможности для специалистов, разрабатывающих новые методы децеллюляризации тканей, химической модификации и стерилизации коллагеновых материалов в целях получения имплантатов для регенеративной медицины.

Проблемы, связанные с активацией макрофагов недеградирующими материалами, по-видимому, должны решаться иначе. Макрофаги, фагоцитирующие микрочастицы износа поверхности суставных эндопротезов, и макрофаги, мигрирующие к обширным поверхностям синтетических имплантов, инициируют длительно персистирующее воспаление, остеолиз в первом случае и фиброз во втором. Нивелирование этого эффекта, скорее всего, будет достигнуто путем блокады направленной миграции, адгезии и активации моноцитов/макрофагов, что потребует более глубоких знаний об этих процессах, чем те, которыми мы располагаем в настоящее время.

Добрый день, дорогие читатели!
В прошлый раз я рассказала вам об очень важной группе клеток крови – которые являются настоящими бойцами передовой линии иммунной защиты. Но они не единственные участники операций по захвату и уничтожению «вражеских агентов» в нашем организме. У них есть помощники. И сегодня я хочу продолжить свой рассказ и изучить функции лейкоцитов - агранулоцитов. К этой группе относятся и лимфоциты, в цитоплазме которых отсутствует зернистость.
Моноцит является самым крупным представителем лейкоцитов. Диаметр его клетки составляет 10 – 15 мкм, цитоплазма заполнена крупным ядром в виде фасоли. В крови их немного, всего 2 – 6 %. Но в костном мозге они образуются в большом количестве и созревают в тех же микроколониях, что и нейтрофилы. Но при выходе в кровь, их пути расходятся. Нейтрофилы, путешествуют по сосудам и всегда находятся в готовности №1. А моноциты быстро расселяются по органам и там превращаются в макрофаги. Половина из них уходит в печень, а остальные расселяются в селезенку, кишечник, легкие и т.д.

Макрофаги – это оседлые, окончательно созревшие. Как и нейтрофилы, они способны к фагоцитозу, но, кроме того, имеют свою сферу влияния и другие конкретные задачи. Под микроскопом макрофаг – весьма видная клетка с внушительными размерами до 40 – 50 мкм в диаметре. Это настоящая передвижная фабрика по синтезу специальных белков для собственных нужд и для соседних клеток. Оказывается, макрофаг в сутки может синтезировать и выделять до 80! различных химических соединений. Вы спросите: какие активные вещества выделяют макрофаги? Это зависит от того, где живут макрофаги и какие функции выполняют.

Функции лейкоцитов:

Начнем с костного мозга. Существует два вида макрофагов, участвующих в процессе обновления костной ткани – остеокласты и остеобласты. Остеокласты постоянно циркулируют по костной ткани, отыскивают старые клетки и уничтожают их, оставляя за собой свободное пространство для будущего костного мозга, а остеобласты формируют новую ткань. Эту работу макрофаги выполняют, синтезируя и выделяя специальные стимулирующие белки, ферменты и гормоны. Например, для разрушения кости они синтезируют коллагеназу и фосфатазу, а для выращивания эритроцитов - эритропоэтин.
Есть еще клетки – «кормилицы» и клетки – «санитары», которые обеспечивают быстрое размножение и нормальное созревание клеток крови в костном мозге. Гемопоэз в костях идет островками – в середине такой колонии располагается макрофаг, а вокруг теснятся красные клетки разного возраста. Выполняя функцию кормящей матери, макрофаг снабжает растущие клетки питанием – аминокислотами, углеводами, жирными кислотами.

Особую роль играют в печени. Там они называются купферовыми клетками. Активно работая в печени, макрофаги поглощают различные вредные вещества и частицы, поступающие из кишечника. Вместе с клетками печени они участвуют в обработке жирных кислот, холестерина и липидов. Таким образом, они неожиданно оказываются причастными к формированию холестериновых бляшек на стенках сосудов и возникновению атеросклероза.

Пока еще не совсем ясно, с чего начинается атеросклеротический процесс. Возможно, здесь срабатывает ошибочная реакция на «свои» липопротеиды в крови, и макрофаги, как бдительные иммунные клетки, приступают к их захвату. Получается, что прожорливость макрофагов имеет как положительные, так и отрицательные стороны. Захват и разрушение микробов – это, конечно, хорошо. А вот избыточное поглощение макрофагами жировых веществ – плохо и, вероятно, ведет к патологии, опасной для здоровья и жизни человека.

Но разделять, что хорошо, что плохо макрофагам тяжело, поэтому наша задача облегчить участь макрофагов и самим заботится о своем здоровье и здоровье печени: следить за питанием, сокращать употребление продуктов, содержащих большое количество жиров и холестерина и два раза в год проводить от шлаков и токсинов.

Теперь поговорим о макрофагах, работающих в легких.

Вдыхаемый воздух и кровь в легочных сосудах разделены тончайшей границей. Вы понимаете, насколько важно в данных условиях обеспечить стерильность воздушных путей! Правильно, здесь эту функцию выполняют тоже макрофаги, блуждающие по соединительной ткани легких.
Они всегда наполнены остатками погибших легочных клеток и микробов, вдыхаемых из окружающего воздуха. Макрофаги легких размножаются тут же в зоне своей деятельности, и их число резко возрастает при хронических заболеваниях дыхательных путей.

К сведению курящих! Пылевые частицы и смолистые вещества табачного дыма сильно раздражают верхние дыхательные пути, повреждают слизистые клетки бронхов и альвеол. Легочные макрофаги, конечно, захватывают и обезвреживают эти вредные химические продукты. У курильщиков резко увеличивается активность, число и даже размеры макрофагов. Но спустя 15 – 20 лет предел их надежности истощается. Нежные клеточные барьеры, разделяющие воздух и кровь, нарушаются, инфекция прорывается в глубину легочной ткани и начинается воспаление. Макрофаги уже не в состоянии полноценно работать в качестве микробных фильтров и уступают свое место гранулоцитам. Так, многолетнее курение приводит к хроническим бронхитам и уменьшению дыхательной поверхности легких. Чересчур активные макрофаги разъедают эластичные волокна легочной ткани, что ведет к затруднению дыхания и гипоксии.

Самое печальное, что работая на износ, макрофаги перестают выполнять очень важные функции – это способность бороться со злокачественными клетками. Поэтому хронический гепатит чреват развитием опухолей печени, а хроническая пневмония – раком легких.

Макрофаги селезенки.

В селезенке макрофаги выполняют функцию «убийц», уничтожая стареющие эритроциты. На оболочках эритроцитов обнажаются предательские белки, которые являются сигналом к ликвидации. Кстати сказать, уничтожение старых эритроцитов идет и в печени, и в самом костном мозге – всюду, где есть макрофаги. В селезенке этот процесс наиболее нагляден.

Таким образом, макрофаги являются великими тружениками и самыми главными санитарами нашего организма, выполняя при этом сразу несколько ключевых ролей:

  1. участие в фагоцитозе,
  2. сохранение и переработка важных питательных веществ для нужд организма,
  3. выделение нескольких десятков белков и других биологически активных веществ, регулирующий рост клеток крови и других тканей.

Ну вот, мы знаем функции лейкоцитов - моноцитов и макрофагов. А на лимфоциты опять не осталось времени. О них, самых маленьких защитниках нашего организма, мы поговорим в следующий раз.
А пока давайте оздоровляться и укреплять иммунитет, слушая исцеляющую музыку Моцарта - Симфония сердца:


Желаю вам крепкого здоровья и благополучия!