При появлении в организме чужеродного объекта на защиту здоровья человека становится иммунитет. От того, насколько он развит, зависит риск заражения инфекционными заболеваниями. Таким образом, иммунитет - это способность организма сопротивляться чужеродным вторжениям.

Находится в тесном взаимодействии с другими системами в организме человека. Поэтому, например, имеющиеся у него нервные или эндокринные заболевания будут заметно снижать иммунитет, а низкий иммунитет, в свою очередь, способен весь организм подвергнуть опасности.

Описываемая защита организма делится на два врожденный и приобретенный. Далее мы подробнее расскажем об их особенностях и способах действия.

Врожденная защита организма

Каждый человек рождается со своими защитными функциями, которые и составляют иммунитет. Врожденный иммунитет передается по наследству и сопровождает человека всю жизнь.

При рождении ребенок из стерильной материнской утробы попадает в новый для него мир, где его сразу же начинают атаковать новые и совсем не дружелюбные микроорганизмы, способные серьезно навредить здоровью малыша. Но он не заболевает сразу же. Это как раз и происходит потому, что в борьбе с такими микроорганизмами организму новорожденного помогает естественный врожденный иммунитет.

Каждый организм борется своими силами за внутреннюю безопасность. Система врожденного иммунитета достаточно сильная, однако она напрямую зависит от наследственности конкретного человека.

Формирование защиты организма

Врожденный иммунитет начинает свое формирование, когда ребенок находится в утробе матери. Уже со второго месяца беременности закладываются частицы, которые будут отвечать за безопасность ребенка. Они вырабатываются из стволовых клеток, потом попадают в селезенку. Это фагоциты - клетки врожденного иммунитета. Они работают индивидуально и не имеют клонов. Их основную функцию составляет поиск враждебных объектов в организме (антигенов) и нейтрализация их.

Названный процесс происходит с помощью определенных механизмов фагоцитоза:

  1. Фагоцит движется к антигену.
  2. Прикрепляется к нему.
  3. Активируется мембрана фагоцита.
  4. Частица либо втягивается в клетку, а края мембраны смыкаются над ней, либо заключается в образованные псевдоподии, обволакивающие ее.
  5. В вакуоль с заключенной в ней чужеродной частицей входят лизосомы, содержащие пищеварительные ферменты.
  6. Антиген уничтожается и переваривается.
  7. Продукты деградации выбрасываются из клетки.

В организме существуют также цитокины - сигнальные молекулы. При обнаружении опасных объектов именно они вызывают фагоциты. Используя цитокины, фагоциты могут вызвать на помощь другие фагоцитные клетки к антигену и активировать спящие лимфоциты.

Защита в действии

В степени сопротивляемости организма к инфекциям важную роль играет иммунитет. Врожденный иммунитет в таких случаях обеспечивает защиту организма на 60 %. Это происходит с помощью следующих механизмов:

  • наличия в организме природных барьеров: слизистых оболочек, кожи, сальных желез и т. п.;
  • работы печени;
  • функционирования так называемой состоящей из 20 белков, синтезированных печенью;
  • фагоцитоза;
  • интерферона, NK-клеток, NKT-клеток;
  • противовоспалительных цитокинов;
  • естественных антител;
  • противомикробных пептидов.

Унаследованная способность уничтожать чужеродные вещества, как правило, выступает первой линией защиты здоровья человека. Механизмы врожденного иммунитета имеют такую особенность, как наличие эффектов, которые быстро обеспечивают деструкцию патогена, без подготовительных этапов. Слизистые оболочки выделяют слизь, которая затрудняет возможное прикрепление микроорганизмов, а движение ресничек очищает дыхательный тракт от чужеродных частичек.

Врожденный иммунитет не изменяется, он контролируется генами и наследуется. NK-клетки (так называемые натуральные киллеры) врожденной защиты убивают патогены, образующиеся в организме, - это могут быть носители вируса или опухолевые клетки. Если количество и активность NK-клеток падает, болезнь начинает прогрессировать.

Приобретенный иммунитет

Если врожденный иммунитет присутствует у человека от рождения, то приобретенный появляется в процессе жизни. Он бывает двух типов:

  1. Естественно полученный - формирующийся в процессе жизни как реакция на попадающие в организм антигены и патогены.
  2. Искусственно приобретенный - формирующийся в результате вакцинирования.

Антиген вводится вакциной, и организм отвечает на его присутствие. Распознав «врага», организм вырабатывает для его устранения антитела. Кроме того, на некоторое время данный антиген остается в клеточной памяти, и в случае его нового вторжения он будет так же уничтожен.

Таким образом, в организме существует «иммунологическая память». Приобретенный иммунитет может быть «стерильным», то есть сохраняться и пожизненно, однако в большинстве случаев он существует до тех пор, пока в организме находится вредный возбудитель.

Принципы защиты врожденного и приобретенного иммунитета

Принципы защиты имеют одно направление - уничтожение вредоносных объектов. Но при этом врожденный иммунитет борется с опасными частичками с помощью воспаления и фагоцитоза, а приобретенный использует антитела и иммунные лимфоциты.

Работают эти две защиты взаимосвязано. Система комплимента является между ними посредником, с ее помощью обеспечивается непрерывность иммунного ответа. Так, NK-клетки являются частичкой врожденного иммунитета, при этом они продуцируют цитокины, которые, в свою очередь, регулируют функцию Т-лимфоцитов, относящихся к приобретенному.

Повышение защитных свойств

Приобретенный иммунитет, врожденный иммунитет - все это единая взаимосвязанная система, а значит, для ее укрепления необходим комплексный подход. Необходимо заботиться об организме в целом, этому способствует:

  • достаточная физическая активность;
  • правильное питание;
  • благоприятная окружающая обстановка;
  • поступление в организм витаминов;
  • частое проветривание помещения и поддержание в нем благоприятной температуры и влажности.

Питание тоже играет не последнюю роль в эффективности иммунной системы. Чтобы она работала четко, в рационе должны присутствовать:

  • мясо;
  • рыба;
  • овощи и фрукты;
  • морепродукты;
  • кисломолочные продукты;
  • зеленый чай;
  • орехи;
  • крупы;
  • бобовые.

Заключение

Из сказанного выше понятно, что для нормальной жизнедеятельности человека необходим хорошо развитый иммунитет. Врожденный иммунитет и приобретенный действуют взаимосвязано и помогают организму избавляться от проникших в него вредных частиц.А для их качественной работы необходимо отказаться от вредных привычек и придерживаться здорового образа жизни, чтобы не нарушать жизнедеятельность «полезных» клеток.

Врожденный иммунитет характеризуется как наследуемый, В связи с этим он функционирует независимо от наличия элементов генетической чужеродности и опосредуется через ряд факторов - физических, химических, гуморальных и клеточных. Клетки врожденного иммунитета (моноциты/макрофаги, дендритные клетки, естественные киллеры, гранулоциты) не имеют классических антигенраспознающих рецепторов, позволяющих узнавать индивидуальные эпитопы антигена, и не формируют память на чужеродное начало. Вместе с тем они способны распознавать с помощью специальных рецепторных структур (паттернов) группы молекул, характеризующие общую молекулярную мозаику патогена. Такое распознавание сопровождается быстрой активацией клеток, определяющей их способность и готовность к осуществлению защитных эффекторных функций. Однако эти процессы существеннейшим образом отличаются от таковых, развивающихся при формировании адаптивного иммунитета. Активация эффекторов врожденного иммунитета осуществляется в результате прямого действия чужеродного начала на их рецепторы, не требующего развития процессов клеточных взаимодействий, размножения и созревания эффекторных клеток. В отличие от врожденного иммунитета адаптивный иммунитет без развития этих про цессов не формируется. Важным следствием врожденного иммунитета является видовая резистентность (невосприимчивость) к отдельным инфекциям. Поскольку иммунитет по определению не может быть неспецифическим, устаревшим и ныне не используемым синонимом врожденного иммунитета является «неспецифический иммунитет» (Non-specific immunity).
Адаптивный иммунитет принципиально отличается от врожденного. Адаптивный иммунитет является единственной формой тонкой специфической защиты организма от генетической чужеродности самого широкого спектра, не наследуется, формируется только при наличии генетически чужеродных антигенов, опосредуется через гуморальные и клеточные факторы. Клеточные факторы адаптивного иммунитета экспрессируют (несут на поверхности) ан-тигенраспознающие рецепторы и формируют память на чужеродное начало, с которым они контактировали. Как уже отмечалось, к принципиально важным механизмам адаптивного иммунитета относятся процессы клеточных взаимодействий, размножение предшественников эффекторных клеток и их дифференцировка. Принципиальные различия врожденного и приобретенного (адаптивного) иммунитета показаны в табл. 8.1.


Защитные факторы врожденного иммунитета подразделяются на две основные группы (табл. 8.2). Одна из них - это «Факторы врожденной или естественной резистентности», формирование и функционирование которых не зависит от попадания в организм чужеродных антигенов, строения или формы антигенного материала. Более того, эти факторы не активируются под влиянием антигенов. По сути дела такие факторы являются физиологическими барьерами, защищающими организм от антигенной агрессии. Они функционируют на протяжении его борьбы с инфекцией, но наибольшая эффективность действия факторов проявляется в первые 3-4 часа после инфицирования организма. В основном это физические и химические факторы. Они не оказывают влияния на формирование адаптивного иммунитета.

Другая группа факторов врожденного иммунитета - это «факторы, формирующие процесс доиммунного воспаления». Они представлены гуморальными и клеточными факторами, которые также образуются и функционируют независимо от попадания в организм чужеродных антигенов, но они способны активироваться под их действием и оказывать влияние как на формирование специфического адаптивного иммунного ответа, так и на его функции. Эти факторы также действуют на протяжении борьбы организма с инфекцией, но наибольшая их эффективность отмечается через 72-96 часов после инфицирования. Развивая процессы доиммунного воспаления и одновременно с этим формируя ранний индуцибельный ответ, эти факторы и каскадным образом развивающиеся защитные реакции врожденного иммунитета локализуют микроорганизмы в очаге воспаления, предотвращают их распространение по организму, поглощают и убивают их. Перерабатывая частицы поглощенного антигена и представляя их антигенраспознающим инициаторам адаптивного иммунитета, клеточные факторы врожденного иммунитета являют ту основу, на которой формируется специфический адаптивный иммунный ответ, т.е. иммунитет второй линии защиты. Более того, участвуя в реакциях адаптивного иммунитета, указанные факторы повышают его эффективность. Основные отличия этих факторов показаны в табл. 8.2.
Как уже отмечалось, формирование специализированного иммунного ответа приводит к завершению защитных реакций, к разрушению антигена и к выведению его из организма. Это сопровождаются завершением процессов воспаления.
Характеризуя факторы врожденного иммунитета, необходимо отметить характерную для них многокомпонентность, различную тканевую локализацию, генетически контролируемый индивидуальный уровень.
В целом все эти процессы реализуются в реакциях организма на любые антигены. Однако степень их вовлечения, выраженности и эффективности действия определяется рядом параметров. Среди них основными являются особенности строения антигена, характер его попадания в организм (проникновение микроба через поврежденные кожные покровы или через слизистые оболочки, трансплантация клеток, тканей или органов, внутрикожная, внутримышечная или внутривенная инъекция разного рода растворимых или корпускулярных антигенов и др.), генетический контроль конкретной реактивности организма.
Одним из сильных, индуцирующих развитие воспаления, факторов являются активирующие компоненты самих микроорганизмов, таких как липополисахарид (ЛПС) грамотрицательных бактерий, липотейхоевые кислоты грамположительных бактерий, пептидогликан грамотрицательных и грамположительных бактерий, минимальным компонентом которого являются мурамилдипептид, маннаны, бактериальная ДНК, двуспиральная РНК вирусов, глюканы грибов и др. Распознавание этих структур резидентными макрофагами сопровождается активацией клеточных факторов врожденного иммунитета и индукцией воспалительного ответа. Другими продуктами, активирующими клеточные компоненты врожденного иммунитета, в т.ч. клетки эндотелия мелких сосудов, является действие компонентов (гистамин, тромбин, ИЛ-1, ФНОα и др.), вырабатываемых поврежденной тканью в местах внедрения микроба.
Мощным фактором, определяющим развитие доиммунного воспаления, является последующая активация подвижных макрофагов воспалительного экссудата, созревающих из циркулирующих в крови моноцитов и вовлекаемых в воспалительный очаг. Активацию фагоцитов обеспечивают не только распознавание частиц в качестве чужеродных, захват и поглощение антигена, но и происходящие в результате развития этих процессов образование и секреция растворимых продуктов - цитокинов. Секретируемые цитокины, бактериальные компоненты, продукты повреждения тканей активируют клетки плоского эндотелия кровеносных капилляров, принимающего форму высокого (кубического) эндотелия. Активация клеток эндотелия сопровождается синтезом и секрецией ряда цитокинов, прежде всего хемокинов, проявляющих свойства хемоаттрактантов и необходимых для диапедеза (проникновения) лейкоцитов через стенку кровеносных сосудов в очаг формирующегося воспаления. Результатом является развитие локальной сосудистой реакции, основные стадии которой включают:
первоначальное кратковременное (от нескольких секунд до нескольких минут) замедление кровотока, в конечном итоге усиливающее повреждение тканей и образование медиаторов воспаления;
последующее усиление проницаемости стенок капилляров, расширение сосудов, усиление лимфо- и кровотока, транспорт белков плазмы, эмиграция лейкоцитов из кровеносного русла в воспалительный очаг, усиление секреции цитокинов клетками воспаления, формирование местного отека и активной гиперемии;
усиление воспаления в пропитанной экссудатом ткани, превращение под действием цитокинов фибриногена в фибрин, сеть которого тромбирует лимфатические протоки и предотвращает диссеминацию микробов за пределы очага воспаления. Этому способствует постепенная смена повышенного кровотока на формирование венозного застоя крови с тромбозом венул, обеспечивающее отграничение воспалительного очага от окружающих тканей. Возникают классические признаки воспаления - опухоль, покраснение, боль, жар с повышением температуры тела, также способствующим очищению организма от индуцировавшей воспаление микрофлоры.
Эмиграция лейкоцитов из кровеносного сосуда в ткани (диапедез)
Процесс эмиграции клеток из кровеносного сосуда через эндотелий сосудистой стенки в ткани именуется диапедезом. Это важнейшая реакция, благодаря которой клетки получают возможность мигрировать в участки поврежденной ткани и формировать очаг воспаления для локализации патогена и его уничтожения. Процесс диапедеза иллюстрируется ниже, на примере нейтрофилов (рис. 8.1).

Начальные этапы этого процесса характеризуются движением катящихся маргинальных нейтрофилов (rolling-effect) вдоль малых кровеносных сосудов по поверхности интактных клеток эндотелия. Взаимодействие этих клеток с клетками эндотелия индуцируется молекулами адгезии (Р-селектин, CD62P), появляющимися на эндотелиальных клетках под влиянием бактериальных продуктов или продуктов поврежденной ткани. Обычно Р-селектин содержится в гранулах клетки, но при ее активации перемещается на поверхность мембраны. Взаимодействие Р-селектина с мембранными молекулами адгезии фагоцита - L-селектином (CD62L) - является низкоаффинным (малопрочным), поскольку L-селектин легко слущивается с мембраны нейтрофила. Поэтому нейтрофил продолжает катиться по клеткам эндотелия вдоль кровеносного сосуда, но скорость его движения падает.
Полная остановка движения нейтрофила характеризует формирование второй стадии адгезии, обусловленной секрецией клетками эндотелия липида - фактора активирующего тромбоциты - PAF (Platelet-activating factor). Этот фактор активирует нейтрофилы и индуцирует на их поверхности экспрессию интегрина CD11a/CD18, известного как антиген LFA-1 (Lymphocyte function-associated antigen-1, адгезивный антиген типа 1, ассоциированный с функцией лимфоцитов). Происходящие при этом конформационные изменения мембраны нейтрофила обеспечивают повышение аффинности этого рецептора для лиганда ICAM-1 (CD54), экспрессируемого клетками эндотелия. Интегрин CD11a/CD18 (LFA-1) связывается также с лигандом эндотелиальных клеток ICAM-2 (CD102), однако этот мембранный гликопротеид экспрессируется преимущественно на покоящихся клетках эндотелия. Адгезию нейтрофилов к клеткам эндотелия усиливает лиганд миелоидных клеток PSGL-1 (P-selectin glycoprotein ligand-1) или SELPLG (Selectin P ligand) - CD162, связывающийся с Р-селектином клеток эндотелия. Взаимодействие лиганд-рецептор стабилизирует взаимодействие нейтрофилов с клетками эндотелия, нейтрофил вытягивает псевдоподии и с их помощью мигрирует между клетками эндотелия из кровеносного сосуда в ткань. Рецепторы и лиганды нейтрофилов, связывание которых определяет процесс эмиграции нейтрофилов из кровеносного сосуда и очаг воспаления, показаны на рис. 8.2,

В процессе эмиграции нейтрофилов из кровеносного сосуда важную роль играют цитокины, секретируемые активированными макрофагами, клетками эндотелия и самими нейтрофилами. ИЛ-1 или ФНОα, вырабатываемые макрофагами, активируют клетки эндотелия и индуцируют экспрессию Е-селектина (CD62Е), связывающего гликопротеины лейкоцитов и усиливающего клеточную адгезию. Поскольку селектины являются углевод-связывающими белками, их взаимодействие с мембранными гликопротеидами осуществляется через концевой разветвленный углевод (трисахарид) - sialyl Lewis (Le, CD15), входящий в состав гликолипидов и многих гликопротеинов клеточной мембраны. Под влиянием ИЛ-1 усиливается также выработка клетками эндотелия ИЛ-8, обладающего хемотаксическими свойствами и способствующего миграции новых нейтрофилов в воспалительный очаг. ФНОα стимулирует процесс секреции эндотелиальными клетками ИЛ-1, усиливая разворачивающиеся реакции, В конечном итоге это интенсифицирует воспалительный процесс, приводит к вазодиляции, усилению прокоагулянтной активности, тромбозу, повышению экспрессии белков адгезии и продукции хемотаксических факторов.
Мигрирующие в очаг воспаления из периферической крови моноциты и нейтрофилы фагоцитируют внедрившиеся и размножающиеся микробы так же, как разрушенные клетки поврежденной ткани и погибающие клетки в процессе развития воспаления. Моноциты дифференцируются в макрофаги, умножая численность фагоцитирующих в очаге воспаления клеток и поддерживая спектр секретируемых ими цитокинов с различными свойствами, в т.ч. бактерицидными. При массированном инфицировании в очагах воспаления формируются гнойные массы, содержащие остатки тканей, живые и мертвые лейкоциты, живые и мертвые бактерии, остатки фибрина, лимфы, сыворотки.
Необходимо отметить, что характер доиммунного воспаления и его выраженность в значительной степени определяются природой вызвавшего его микроорганизма. Так, при инфицировании организма микобактериями и грибами развиваются процессы гранулематозного воспаления, глистные инвазии и аллергенные воздействия сопровождаются воспалением с преимущественной инфильтрацией поврежденной ткани эозинофилами, ряд бактериальных инфекций, например, устойчивые к лизоциму грамположительные бактерии, индуцирует развитие острого воспалительного ответа без необратимого повреждения ткани. Применение лекарственных средств способствует очищению и заживлению очага воспаления.

Содержание

Защитной реакцией или иммунитетом называется ответ организма на внешнюю опасность и раздражители. Множество факторов в теле человека способствуют его защите от различных болезнетворных организмов. Что такое врождённый иммунитет, как происходит защита организма и в чем заключается ее механизм?

Врожденный и приобретенный иммунитет

Само понятие иммунитета связано с эволюционно приобретенными способностями организма препятствовать попаданию в него чужеродных агентов. Механизм борьбы с ними разный, так как виды и формы иммунитета отличаются своим многообразием и характеристиками. По происхождению и формированию защитный механизм может быть:

  • врожденный (неспецифический, естественный, наследственный) – защитные факторы в теле человека, которые были сформированы эволюционно и помогают бороться с чужеродными агентами с самого начала жизни; также данный вид защиты обуславливает видовую невосприимчивость человека к заболеваниям, которые свойственны животным, растениям;
  • приобретенный – защитные факторы, которые формируются в процессе жизни, может быть естественным и искусственным. Естественная защита формируется после перенесенного воздействия, вследствие чего организм способен приобретать антитела к данному опасному агенту. Искусственная защита связана с введением в организм готовых антител (пассивная) или ослабленной формы вируса (активная).

Свойства врожденного иммунитета

Жизненно важным свойством врожденного иммунитета является постоянное наличие в организме естественных антител, которые обеспечивают первичную реакцию на вторжение патогенных организмов. Важное свойство естественной ответной реакции – система комплимента, которая представляет собой комплекс белков в крови, которые обеспечивают распознавание и первичную защиту от чужеродных агентов. Данная система выполняет следующие функции:

  • опсонизация – процесс присоединения элементов комплекса к поврежденной клетке;
  • хемотаксис – совокупность сигналов посредством химической реакции, которая привлекает другие иммунные агенты;
  • мембранотропный повреждающий комплекс – белки комплимента, которые разрушают защитную мембрану опсонизированных агентов.

Ключевое свойство естественной ответной реакции – первичная защита, вследствие которой организм может получить информацию о новых для него чужеродных клеток, вследствие чего создается уже приобретенный ответ, который при дальнейшем столкновении с аналогичными патогенами будет уже готов для полноценной борьбы, без привлечения других факторов защиты (воспаления, фагоцитоза и т.д.).

Формирование врожденного иммунитета

Неспецифическая защита есть у каждого человека, она закреплена генетически, способна передаваться по наследству от родителей. Видовой особенностью человека является то, что он не восприимчив к ряду болезней, характерных для других видов. Для формирования врожденного иммунитета важную роль играет внутриутробное развитие и грудное вскармливание после рождения. Мать передает своему ребенку важные антитела, которые закладывают основу его первых защитных сил. Нарушение формирования естественной защиты может привести к иммунодефицитному состоянию из-за:

  • воздействия излучения;
  • химических агентов;
  • болезнетворных организмов в период внутриутробного развития.

Факторы врожденного иммунитета

Что такое врождённый иммунитет и в чем состоит механизм его действия? Совокупность общих факторов врожденного иммунитета призваны создать определенную линию защиты организма от чужеродных агентов. Данная линия состоит из нескольких защитных барьеров, которые выстраивает организм на пути патогенных микроорганизмов:

  1. Эпителий кожи, слизистые оболочки – первичные барьеры, которые обладают колонизационной резистентностью. Вследствие проникновения патогена развивается воспалительная реакция.
  2. Лимфатические узлы – важная защитная система, которая борется с патогеном до внедрения его в систему кровообращения.
  3. Кровь – при попадании инфекции в кровь развивается системный воспалительный ответ, при котором задействуются специальные форменные элементы крови. Если микробы не погибают в крови – инфекция распространяется на внутренние органы.

Клетки врожденного иммунитета

В зависимости от механизмов защиты бывает гуморальный и клеточный ответ. Совокупность гуморальных и клеточных факторов создают единую систему защиты. Гуморальная защита – ответ организма в жидкостной среде, внеклеточном пространстве. Гуморальные факторы врожденного иммунитета подразделяются на:

  • специфические – иммуноглобулины, которые вырабатывают В-лимфоциты;
  • неспецифические – секреты желез, сыворотка крови, лизоцим, т.е. жидкости, обладающие антибактериальными свойствами. К гуморальным факторам относят систему комплимента.

Фагоцитоз – процесс поглощения инородных агентов, происходит посредством клеточной активности. Клетки, которые участвуют в ответе организма подразделяются на:

  • Т-лимфоциты – долгоживущие клетки, которые подразделяются на лимфоциты с разными функциями (натуральные киллеры, регуляторы и др.);
  • В-лимфоциты – продуцируют антитела;
  • нейтрофилы – содержат антибиотические белки, имеют рецепторы хемотаксиса, поэтому мигрируют к месту воспаления;
  • эозинофилы – участвуют в фагоцитозе, отвечают за обезвреживание гельминтов;
  • базофилы – отвечают за аллергическую реакцию в ответ на раздражители;
  • моноциты – специальные клетки, которые превращаются в разные виды макрофагов (костной ткани, легких, печени и т.д.), обладают множеством функций, в т.ч. фагоцитоз, активизация комплимента, регулирование процесса воспаления.

Стимуляторы клеток врожденного иммунитета

Последние исследования ВОЗ показывают, что почти у половины населения планеты важные иммунные клетки – натуральные киллеры, находятся в дефиците. Из-за этого люди чаще подвержены инфекционным, онкологическим заболеваниям. Однако есть специальные вещества, которые стимулируют активность киллеров, к ним относятся:

  • иммуномодуляторы;
  • адаптогены (общеукрепляющие вещества);
  • трансферфакторные белки (ТБ).

Наибольшей эффективностью обладают ТБ, стимуляторы клеток врожденного иммунитета данного вида были обнаружены в молозиве и яичном желтке. Данные стимуляторы широко используют в медицине, их научились выделять из естественных источников, поэтому трансферфакторные белки сейчас находятся в свободном доступе в виде медицинских препаратов. Их механизм действия направлен на восстановление повреждений в системе ДНК, налаживание иммунных процессов видовой особенности человека.

Видео: врожденный иммунитет

Внимание! Информация, представленная в статье, носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению, исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Иммунитет в целом и каждая из его систем в отдельности решают две задачи: распознавание чужеродных клеток или веществ, попавших в макроорганизм, и их обезвреживание или удаление из организма. Эти задачи по-разному решаются врожденным и приобретенным иммунитетом, но особенно эффективно в их взаимодействии.

Напомним кратко, как врожденный иммунитет решает эти задачи. Здесь функционируют четыре отдельные, но взаимодействующие системы: кининовая, комплемент, фагоцитирующие клетки и так называемые нормальные киллеры (NK-клетки). Первая из них - кининовая - входит в систему свертывания крови. Ее начальный компонент - фактор Хагемана, или XII фактор свертывания крови - активируется на чужеродных отрицательных поверхностях (заноза, стекло, кварц), проникших во внутреннюю среду организма, и через ряд каскадных энзиматических усилений приводит к отщеплению от белка-предшественника девятичленного пептида - брадикинина, мощного медиатора воспаления. Брадикинин активирует сосудистый компонент воспаления: расширяет капилляры, резко усиливает их проницаемость для плазмы крови и способствует привлечению фагоцитирующих клеток в очаг воспаления.

Более сложным, утонченным и многогранным действием обладает система комплемента (С). Ее центральный компонент - С3 тонко дифференцирует собственные и чужеродные клеточные поверхности. Активированный С3, представленный его фрагментом С3b, стабилизируется при ковалентной фиксации на клеточной поверхности. При этом поверхности собственных неповрежденных клеток содержат белки, делающие С3b доступным сывороточным протеазам, то есть ферментам, быстро и эффективно разрушающим С3b. Этот фрагмент прочно стабилизируется только на бактериальных (или других чужеродных биологических поверхностях) и вызывает цепь каскадных энзиматических усилений реакции. Конечных выходов в системе комплемента три. Это, во-первых, фиксация на мембране так называемого комплекса, атакующего мембрану (С6-С9), последний член которого, полимеризуясь в мембране, проделывает в ней сеть каналов, приводящих микроорганизмы к гибели (цитотоксический эффект). Второй, очень важный эффект активации системы комплемента - опсонизация микроорганизмов, то есть их повышенная фагоцитируемость макрофагами. Опсонизация - следствие фиксации на чужеродных биологических поверхностях С3b. На поверхности макрофагов имеются рецепторы к С3b, что резко повышает сродство фагоцитирующих клеток к опсонизированным бактериям или другим микроорганизмам. И наконец, третий эффект комплемента - генерация медиаторов острой фазы воспаления. Освобождающиеся при расщеплении С3 и С5 пептидные фрагменты С3а и С5а являются чрезвычайно активными медиаторами воспаления, особенно С5а. Его главная мишень - так называемые тучные клетки, относящиеся к родственникам макрофагов и локализующиеся в тканях по ходу сосудов. Они синтезируют медиаторы острой фазы воспаления гистамин и серотонин - производные аминокислот гистидина и триптофана. Эти амины накапливаются в гранулах внутри клетки. Тучные клетки имеют рецепторы к С5а и в меньшей мере к С3a, активируются ими и выбрасывают в окружающую среду гистамин и серотонин. Эти медиаторы действуют на кровеносные капилляры, расширяют их и увеличивают проницаемость капилляров для плазмы и фагоцитирующих клеток. Вместе с С3а и С5а они создают градиент веществ, привлекающих фагоциты в очаг воспаления. Вовлечение тучных клеток в воспаление еще один каскад взрывного усиления исходной реакции.

Таким образом, система комплемента позволяет распознать чужеродную биологическую поверхность, находящуюся во внутренней среде организма, оказать на нее разрушительное воздействие, вызвать и усилить фагоцитоз, направленный на соответствующий микроорганизм или клетку. И все это при резчайшем усилении на каждом этапе развития процесса.

Третья чрезвычайно эффективная система - фагоцитирующие клетки - макрофаги и нейтрофилы. Причем макрофаги не только фагоцитируют и разрушают чужеродные частицы и микроорганизмы, но и сами являются источником мощных медиаторов воспаления. Помимо рецепторов к С3b фагоцитирующие клетки обладают рецепторами к липополисахаридам бактериальной стенки многих бактерий и активируются этими липополисахаридами. Активированные макрофаги резко повышают фагоцитирующую способность и синтез мощных протеаз, разрушающих поглощенные частицы. Одновременно макрофаги начинают синтезировать новые медиаторы воспаления - так называемый фактор некроза опухолей (ФНО), интерлейкины (IL) 1, 6, 8 (биологически активные пептиды) и активные формы кислорода (кислородный взрыв), включающие синглетный кислород, ион гидроксила, перекись водорода и окись азота (O¯ 2 , OH¯, H 2 O 2 и NO). ФНО способствует остановке и выходу фагоцитирующих клеток из капилляров в очаг воспаления, а также сам активирует макрофаг; IL-8 создает градиент хемотаксиса¹ для нейтрофилов; IL-6 индуцирует синтез белка острой фазы в печени, усиливающего фагоцитоз бактерий, а IL-1, действуя на гипоталамус, вызывает повышение температуры и озноб. Кислородный взрыв приводит к синтезу и секреции широкого спектра веществ, токсичных для микроорганизмов. Таковы функции макрофагов и нейтрофилов - клеток фагоцитирующих и генерирующих медиаторы воспаления, а также непосредственно или через опсонизацию распознающих чужеродные микроорганизмы.

Приложение 1

6. NK-клетки и их мишени.

Врожденный иммунитет

Уровни врожденного иммунитета

1 уровень. Механический (покровные барьеры – кожа и слизистые). Неповрежденная кожа и слизистые оболочки непроницаемы для большинства микробных агентов. Молочная и жирная кислоты, синтезируемы сальными железами, обеспечивают низкие значения pH кожи.

Уровень. Бактерицидные факторы секретов

ü соляная кислота в желудочном соке

ü спермин и цинк в сперме

ü лактоферрин в материнском молоке

ü лизоцим в слезах, слюне, выделениях из носа, мокроте

ü дефенсины, кателицидины

Уровень. Колонизационная резистентность

Уровень. Система комплемента, интерферона

Уровень. Первичный фагоцитоз микробов фагоцитами

Уровень. Система НК-клеток

Распознающие рецепторы врожденного иммунитета

Активация врожденного иммунитета начинается с распознавания антигенных структур с помощью многочисленных рецепторов.



Таблица Распознавание в системе врожденного иммунитета

Особую группу рецепторов врожденного иммунитета составляют паттерн-распознающие рецепторы (patern recognition recepror – PRR). К ним относятся Toll, NOD, RID – рецепторы. Эти рецепторы распознают общие для многих типов микроорганизмов структуры – липополисахариды, пептидогликаны, флагеллин.

Toll – рецепторы имеют на своей поверхности различные клетки иммунной системы – моноциты, макрофаги, дендритные клетки, нейтрофилы, лимфоциты, а также другие клетки организма – фибробласты, эпителиальные, эндотелиальные клетки. В настоящее время у человека идентифицировано 10 Toll – подобных рецепторов.

Рис. Toll-like рецепторы человека и их лиганды

Таблица. Toll-подобные рецепторы (TLR)человека и их лиганды

Таблица. Toll-подобные рецепторы, расположенные на клетках иммунной системы

Экспрессия Toll – рецепторов обеспечивает важную связь между врожденным и адаптивным иммунитетом, поскольку их активация приводит к превращению фагоцитов в эффективные антигенпрезентирующие клетки. Экспрессия большинства Toll – рецепторов увеличивается при действии провоспалительных цитокинов.



NOD – рецепторы распознают вещества, которые образуются при повреждении клеток организма (АТФ, кристаллы мочевой кислоты) и вызывают развитие воспалительного процесса. NOD – рецепторы имеются на макрофагах, дендритных клетках, эпителии слизистых оболочек.

Особую группу представляют рецепторы, повышающие эффективность фагоцитоза. К ним относятся рецепторы к С3-компоненту комплемента и Fc-фрагменту иммуноглобулинов. Антиген в комплексе с антителом захватывается клетками врожденного иммунитета через Fc-рецепторы, которые взаимодействуют с Fc-фрагментом иммуноглобулинов. Фагоцитоз опсонизированного объекта (покрытого антителом) в сотни раз более эффективен, чем фагоцитоз свободного объекта.

Система комплемента

Состоит более, чем из 20 инертных белков сыворотки, 9 из которых являются основными и обозначаются как С1, С2 и т.д. - С9. Формирование комплемента в единое целое или его активация происходит при внедрении в организм чужеродных антигенов.

Комплемент может активироваться двумя путями: классическим и альтернативным.

Рис. Пути активации системы комплемента

Рис. Биологические функции системы комплемента

Противомикробные пептиды

Противомикробные пептиды – катионные белка, способные поражать вирусы, грибы, простейшие. Синтезируются нейтрофилами и эпителиальными клетками при взаимодействии их Toll – рецепторов с антигеном. Осуществляют мгновенный иммунитет. Часто их называют эндогенными антибиотиками. Различают 2 основных вида – дефенсины и кателицидины.

Механизм действия: противомикробные пептиды разрушают наружные мембраны микроорганизмов. Мембраны бактериальных клеток заряжены отрицательно, а пептиды положительно. Разность зарядов обеспечивает их взаимодействие. Катионные белки встраиваются в мембрану микробной клетки, образуя поры. Бактериальная клетка теряет ионы калия, аминокислоты. Внутрь клетки поступает вода, обеспечивая ее гибель.

Белки острой фазы продуцируются моноцитами, макрофагами, фибробластами. Синтез белков острой фазы существенно повышается в ответ на инфекцию.

С-реактивный белок (CRB) связывается с поверхностью бактерий, активирует систему комплемента. При бактериальной инфекции увеличивается в 100 раз.

Маннозосвязывающий лектин активирует систему комплемента по лектиновому пути.

Сывороточный амилоид А выступает в роли хемоаттрактанта.

Фибриноген выступает как опсонин

Лизоцим – фермент, содержащийся в отделяемом слизистых оболочек глаз, ротовой полости, носоглотки, грудном молоке. Вырабатывается моноцитами крови и тканевыми макрофагами. Разрушает пептидогликаны клеточных стенок бактерий.

Фагоцитоз

Фагоцитоз – это активное распознавание и поглощение микроорганизмов фагоцитирующими клетками с их последующей инактивацией и перевариванием. Фагоцитоз – самый древний вид защиты, унаследованный нами в ходе эволюции. Выраженной фагоцитарной активностью обладают нейтрофилы, моноциты и макрофаги.

Нейтрофилы происходят от стволовой клетки костного мозга. Это короткоживущие неделящиеся клетки с сегментированным ядром и набором гранул, содержащих большое количество бактерицидных веществ. Их время жизни составляет 2-3 суток. Нейтрофилы являются основными клетками, осуществляющими уничтожение внеклеточных микроорганизмов.

Макрофаги образуются из стволовой клетки красного костного мозга, на территории которого дифференцируются до стадии моноцита. Моноциты попадают в ток крови и расселяются по тканям, превращаясь в тканевые макрофаги, где функционируют в течение недель или месяцев. Для них характерно изобилие гранул, близких по составу к содержимому гранул нейтрофилов.

Их функциями является поглощение и уничтожение внедрившихся микроорганизмов (в основном внутриклеточных), а также поврежденных, дегенерированных, вирусинфицированных и опухолевых клеток и образующихся иммунных комплексов. Это клетки - «мусорщики».

Нейтрофилы – это основные участники острого воспаления, макрофаги – хронического, они способны стимулировать образование гранулем.

Функции фагоцитов:

n Фагоцитарная – захват и внутриклеточное переваривание микроорганизмов.

n Антигенпрезентирующая – презентация антигена Т-лимфоцитам в комплексе с молекулами главного комплекса гистосовместимости (HLA). Этой функцией обладают антигенпрезентирующие макрофаги.

n Секреторно-регуляторная – синтез и секреция некоторых белков системы комплемента, отдельных цитокинов, лизоцима, белков системы свертывания крови.

n Цитотоксическое действие фагоцитов.

Связывание патогена с фагоцитом может быть прямым и опосредованным. Прямое распознавание происходит с участием Toll-рецепторов. При опосредованном распознается опсонизированный объект, покрытый антителами или C3b – компонентом комплемента.

Хемотаксис

Для того, чтобы процесс фагоцитоза произошел, необходимо сближение фагоцитирующих клеток с антигеном, который вызвал повреждение. Для этого нейтрофилы должны покинуть кровеносное русло, поскольку очаги внедрения антигена чаще имеют тканевую локализацию. Это возможно благодаря хемотаксису. Хемотаксис – движение фагоцитов по концентрационному градиенту химических веществ – хемоаттрактантов. В роли хемоаттрактантов для нейтрофилов выступают продукты жизнедеятельности бактерий, белки системы комплемента, цитокины и.т.д.

Основными хемоаттрактантами для макрофагов являются гамма-интерферон, хемотаксический макрофагальный фактор.

Адгезия – прилипание

Начинается с адгезии (прилипания) микробной частицы к поверхности фагоцита. Процесс поглощения идет эффективнее, если микробные клетки опсонизированы, то есть покрыты белками системы комплемента и специфическими антителами класса IgG. Особенно важно это для бактерий, имеющих капсулу (пневмококк, менингококк, кишечная палочка, гемофильная палочка и т.д.)

Эндоцитоз (поглощение)

Участок мембраны фагоцита в месте контакта с объектом уплотняется, вытягивается и надвигается на объект подобно механизму застежки «молния» до тех пор пока объект не будет полностью поглощен в фагосому.

Дегрануляция

Цитоплазматические гранулы фагоцитирующих клеток сливаются с фагосомой и образуется фаголизосома, в которой происходит киллинг и разрушение захваченной микробной частицы с помощью антимикробных факторов. Антимикробные системы делятся на те, которые требуют кислород – кислородзависимые и те, которые не требуют кислород – кислороднезависимые.

Кислородзависимые факторы (активные формы кислорода) образуются в ходе респираторного взрыва, представляющего собой каскад окислительных реакций.

Включают:

n супероксидный анион (О 2 -)

n перекись водорода (Н 2 О 2)

n синглетный кислород (О 2)

n гидроксильный радикал (ОН˙)

n оксид азота (NO)

Активные формы кислорода являются очень мощными окислителями, вызывают повреждение липидов, белков, ДНК мироорганизмов, оказывают летальное действие на биологические системы.

К кислороднезависимой группе бактерицидных факторов относятся лизоцим, некоторые протеолитические ферменты, лактоферрин, катионные белки, дефенсины.

Лактоферрин – связывает железо, предотвращает рост и размножение бактерий.

Катионные белки – вызывают повреждение клеточных мембран, лизируют бактериальные клетки.

Дефенсины – встраиваются в липидный слой клеток, нарушают ее проницаемость, обладают летальным действием на широкий спектр бактерий, грибов, вирусов.

Экзоцитоз – удаление продуктов разрушения

Рис. Этапы фагоцитоза

Натуральные киллеры (NK)

Основные клетки иммунобиологического надзора, нацелены на уничтожение вирусинфицированных и опухолевых клеток до формирования адаптивного иммунного ответа. Большие зернистые лимфоциты, в их цитоплазме имеется большое количество гранул, содержащих перфорины и гранзимы. При контакте с клеткой-мишенью перфорины выбрасываются во внеклеточное пространство и образуют поры в клетке-мишени. Через поры в клетку попадают гранзимы, способные активировать каспазы и инициировать апоптоз (запрограммированную клеточную смерть).

Натуральные киллеры не распознают специфический антиген. Они осуществляют лизис собственных клеток, на поверхности которых снижена экспрессия молекул гистосовместимости 1 класса (HLA1 или МHC1), что часто наблюдается при вирусных инфекциях и раке. Активируются ИЛ-12 и ИФ-γ. Перечень патогенов, являющихся мишенью для NK-клеток достаточно широк. Показана повышенная чувствительность к развитию злокачественных новообразований и вирусных инфекций у пациентов с нарушенной дифференцировкой NK – клеток.

Рис. NK-клетки атакуют клетку-мишень

Приложение 1

Занятие 2. Врожденный иммунитет

1. Определение понятия врожденного иммунитета и его отличительные свойства.

2. Клеточные факторы врожденного иммунитета: макрофаги, нейтрофилы, дендритные клетки, NK клетки, тучные клетки.

3. Гуморальные факторы врожденного иммунитета: комплемент, интерфероны, цитокины, хемокины, катионные противомикробные пептиды.

4. Понятие о паттерн-распознающих рецепторах и их роли в физиологических и патологических реакциях врожденного иммунитета.

5. Фагоцитоз, дыхательный взрыв, миграция, хемотаксис.

6. NK-клетки и их мишени.

Врожденный иммунитет – наследственно закрепленная система защиты организма от патогенных и непатогенных микроорганизмов, а также эндогенных продуктов тканевой деструкции.

Система врожденного иммунитета реализует свои функции через:

1. разнообразные клетки – макрофаги, дендритные клетки, нейтрофилы, тучные клетки, эозинофилы, базофилы, а также естественные киллеры или NK-клетки;

2. гуморальные факторы – естественные антитела, цитокины, комплемент, белки острой фазы воспаления, катионные противомикробные пептиды, лизоцим.

Механизмы врожденного иммунитета развиваются очень быстро, в течение нескольких минут и часов после проникновения патогенов. Их действие продолжается во время всего периода борьбы с инфекцией. Однако наиболее эффективно они работают в первые 96 ч. после внедрения микроба, затем уступают место факторам адаптивного иммунитета. Активация врожденного иммунитета не формирует продолжительной иммунной памяти.