Лёгкие постоянно находятся в грудной полости в растянутом состоянии. Оно формируется в результате существования плевральной полости и наличия в ней отрицательного давления.

Плевральная полость образуется следующим образом: лёгкие и стенки грудной полости покрыты серозной оболочкой – плеврой . Между листками висцеральной и париетальной плевры имеется узкая (5-10 мкм) щель, формируется полость, содержащая серозную жидкость, по составу близкую к лимфе. Эта жидкость имеет низкую концентрацию белков, что обуславливает низкое онкотическое давление по сравнению с плазмой крови. Это обстоятельство препятствует накоплению жидкости в плевральной полости.

Давление в плевральной полости ниже атмосферного, что определяется как отрицательное давление. Оно обусловлено эластической тягой лёгких, т.е. постоянным стремлением лёгких уменьшить свой объём. Давление в плевральной полости ниже альвеолярного на величину, создаваемую эластической тягой лёгких: Р пл = Р альв – Р э.т.л. . эластическая тяга лёгких обусловлена тремя факторами:

1) Поверхностным натяжением плёнки жидкости, покрывающей внутреннюю поверхность альвеол – сурфактантом. Это вещество имеет низкое поверхностное натяжение. Сурфактант образуется пневмоцитами II типа, состоит из белков и липидов. Обладает свойством уменьшать поверхностное натяжение стенки альвеолы при уменьшении размеров альвеол. Это стабилизирует состояние стенки альвеол при изменении их объёма. Если бы поверхность альвеол была покрыта слоем водного раствора, то это увеличило бы поверхность натяжения в 5-8 раз. В таких условиях наблюдалось полное спадение одних альвеол (ателектаз) при перерастяжении других. Наличие сурфактанта предотвращает развитие подобного состояния лёгких в здоровом организме.

2) Упругостью ткани стенок альвеол , которые имеют в стенке эластические волокна.

3) Тонусом бронхиальных мышц.

Эластическая тяга лёгких обуславливает упругие свойства лёгких. Количественно упругие свойства лёгких принято выражать растяжимостью легочной ткани С :

где V – прирост объёма лёгких при их растяжении (в мл),

∆Р – изменение транспульмонального давления при растяжении лёгких (в см вод. ст.).

У взрослых С равно 200 мл/см вод. ст, у новорожденных и детей грудного возраста – 5-10 мл/см вод. ст. Данный показатель (его уменьшение) изменяется при заболеваниях лёгких и используется с диагностическими целями.

Плевральное давление изменяется в динамике дыхательного цикла. В конце спокойного выдоха давление в альвеолах равно атмосферному, а в плевральной полости – 3 мм рт. ст. Разность Р альв – Р пл = Р л называется транспульмональным давлением и равна +3 мм рт. ст. Именно это давление поддерживает растянутое состояние лёгких в конце выдоха.

При вдохе, вследствие сокращения инспираторных мышц, объём грудной клетки увеличивается. Давление плевральное (Р пл) становится более отрицательным – к концу спокойного вдоха оно равно –6 мм рт. ст., транспульмональное давление (Р л) нарастает до +6 мм рт.ст., вследствие чего лёгкие расправляются, их объём увеличивается за счёт атмосферного воздуха.

При глубоком вдохе Р пл может снизиться до −20 мм рт. ст. Во время глубокого выдоха это давление может стать положительным, тем не менее оставаясь ниже давления в альвеолах на величину давления, создаваемого эластической тягой лёгких.

Если в плевральную щель попадает небольшое количество воздуха, лёгкое частично спадается, но вентиляция его продолжается. Такое состояние называется закрытым пневмотораксом. Через некоторое время воздух из плевральной полости всасывается и лёгкое расправляется (Всасывание газов из плевральной полости происходит вследствие того, что в крови мелких вен малого круга кровообращения напряжение растворенных газов ниже, чем в атмосфере).

2

1 Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный медицинский университет» Министерства здравоохранения Российской Федерации

2 Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина»

Адекватное дренирование плевральной полости, без сомнения, является обязательным, а зачастую и основным компонентом лечения большинства хирургических заболеваний органов грудной полости, а его эффективность зависит от множества физических параметров как легкого, так и плевры. Важным в патофизиологии плевральной биомеханики является формулировка двух различных, но не взаимоисключающих понятий: нерасправляемое легкое (unexpandable lung) и «утечка» или «сброс воздуха» (air-leak). Нерасправляемое легкое не может занять весь объем плевральной полости даже после дренирования жидкости и воздуха из плевральной полости. Неверно подобранный способ удаления патологического содержимого может не только не принести пользы, но даже усугубить патологическое состояние организма. При этом после и во время дренирования плевральной полости возможно развитие состояния pneumothorax ex vacuo, что представляет собой персистирующий пневмоторакс без фистулы. Важными параметрами, характеризующими описанные процессы в плевральной полости, являются также внутриплевральное давление (Ppl), эластичность плевральной полости. В норме на пике вдоха Ppl составляет до -80 cм вод. ст., а конце выдоха: -50 cм вод. cт. Падение давления плевральной полости ниже -40 cм вод. ст. при удалении патологического содержимого из плевральной полости (пункции плевральной полости) без применения дополнительного разрежения является признаком нерасправляемости легкого. На настоящий момент можно твердо считать необходимым наблюдение за изменениями внутриплеврального давления при лечебно-диагностическом торакоцентезе, дренировании плевральной полости в послеоперационном периоде и любых инвазивных закрытых вмешательствах в закрытой полости плевры на всём протяжении нахождения дренажа или иглы в плевральной полости.

дренирование

манометрия

панцирное легкое

1. Physiology of breathlessness associated with pleural effusions / T. Rajesh // Pulmonary Medicine. - 2015. - Vol. 21, № 4. - P. 338-345.

2. Huggins J.T. Pleural manometry / J.T. Huggins, P. Doelken // Clinics in Chest Medicine. - 2006. - Vol. 27, Issue 2. - P. 229-240.

3. Characteristics of Trapped Lung. Pleural Fluid Analysis, Manometry, and Air-Contrast Chest CT / J.T. Huggins // Chest. – 2007. – Vol. 131, Issue 1. – P. 206-213.

4. Pereyra M.F. Unexpandable Lung / M.F. Pereyra, L. Ferreiro, L. Valdes // Arch. Bronconeumol. - 2013. - Vol. 49, № 2. – P. 63-69.

5. Pleural manometry: technique and clinical implications / J.T. Huggins // Chest. - 2004. - Vol. 126, № 6. - P. 1764–1769.

6. Diagnosis and management bronchopleural fistula / P. Sarkar // The Indian Journal of Chest Diseases & Allied Sciences. – 2010. – Vol. 52, № 2. – P. 97-104.

7. Staes W. "Ex Vacuo" pneumothorax / W. Staes, B. Funaki // Seminars in interventional Radiology. – 2009. – Vol. 26, № 1. – P. 82-85.

8. Comparison of pleural pressure measuring instruments / H.J. Lee // Chest. - 2014. - Vol. 146, № 4. - P. 1007-1012.

9. Elastance of the pleural space: a predictor for the outcome of pleurodesis in patients with malignant pleural effusion / R.S. Lan // Ann. Intern. Med. – 1997. – Vol. 126, № 10. – P. 768-774.

10. Интенсивная терапия: руководство для врачей / В.Д. Малышев, С.В. Свиридов, И.В. Веденина и др.; под ред. В.Д. Малышева, С.В. Свиридова. - 2-е изд., перераб. и доп. - М.: ООО «Медицинское информационное агентство», 2009. - 712 с.

11. A Pleural Manometry Catheter: pat. US 2016/0263296A1 USA: PCT/GB2014/052871 / Roe E.R. ; applicant and patentee Rocket Medical Plc. – US 15/028, 691; stated 22.09.2014; published 15.09.2016.

12. Chest drainage systems and methods US: pat. 8992493 B2 USA: US 13/634,116 / James Croteau ; applicant and patentee Atrium Medical Corporation. – PCT/US2011/022985; stated 28.01.2011; published 31.03.2015.

13. Fessler H.E. Are esophageal pressure measurements important in clinical decision-making? / H.E. Fessler, D.S. Talmor // Respiratory Care. – 2010. – Vol. 55, № 2. – P. 162–174.

14. Noninvasive method for measuring and monitoring intrapleural pressure in newborns: pat. US 4860766 A USA: A 61 B, 5/00 / Sackner M.A.; applicant and patentee Respitrace Corp. – US 07/008, 062; stated 27.04.1987; published 29.08.1989.

15. Maldonado F. Counterpoint: should pleural manometry be performed routinely during thoracentesis? No. / F. Maldonado, J. Mullon // Chest. - 2012. - Vol. 141, № 4. - P. 846–848.

Адекватное дренирование плевральной полости, без сомнения, является обязательным, а зачастую и основным компонентом лечения большинства хирургических заболеваний органов грудной полости. В современной торакальной хирургии известно множество способов дренирования плевральной полости, различающихся по локализации установки дренажа, положению дренажной трубки в плевральной полости, способу удаления и возможности контроля патологического содержимого плевральной полости, величине давления в плевральной полости и множеству других параметров. Цель дренирования плевральной полости - удаление из нее содержимого для расправления легкого на весь объем плевральной полости, восстановления жизненной емкости легкого, уменьшения болевого синдрома и предупреждения генерализации инфекционного процесса. Эффективность достижения цели непосредственно зависит от явлений, происходящих собственно в плевральной полости, биомеханики полости и ее содержимого.

Неверно подобранный способ удаления патологического содержимого может не только не принести пользы, но даже усугубить патологическое состояние организма. Осложнениями после торакоцентеза и дренирования плевральной полости могут быть повреждения диафрагмы, органов брюшной полости, сердца, органов средостения, структур корня легкого. В данном обзоре отечественной и, по большей части, зарубежной литературы мы постараемся шире раскрыть проблему зависимости изменения давления в плевральной полости при дренировании от некоторых физических параметров грудной стенки и плевральной полости.

Респираторная механика плевральной полости весьма сложна и зависит от многих факторов, включающих в себя положение тела пациента, наличие сообщения ее с окружающей средой через дыхательные пути или грудную стенку, характер патологического содержимого, тягу, создаваемую работой дыхательных мышц, целостность костного каркаса грудной стенки, эластичность самой плевры .

Патологическое содержимое плевральной полости может появляться по разным причинам. Однако с точки зрения механического удаления жидкости или воздуха из плевральной полости важнее состава патологического содержимого является состояние легкого и плевры, что определяет в дальнейшем как ответит плевральная полость на медицинское вмешательство.

Важным в патофизиологии плевральной биомеханики является формулировка двух различных, но не взаимоисключающих понятий: нерасправляемое легкое (unexpandable lung) и «утечка» или «сброс воздуха» (air-leak). Эти осложнения возникают не внезапно, однако значительно усложняют лечение, а их неправильная диагностика часто приводит к ошибкам во врачебной тактике.

Нерасправляемым называют легкое, неспособное занять весь объем плевральной полости при удалении патологического содержимого. При этом в плевральной полости создается отрицательное давление. К этому могут привести следующие патологические механизмы: эндобронхиальная обструкция, тяжелые фиброзные изменения легочной ткани и рестрикция висцеральной плевры. При этом такая рестрикция подразделяется на две категории: Trapped Lung и Lung Entrapment . Первая категория аналогична тому, что в отечественной литературе обозначают термином «панцирное легкое».

Термин «Lung Entrapment» включает в себя нерасправляющееся легкое, обусловленное активным воспалительным или опухолевым процессом в плевре, и представляет собой фибринозное воспаление плевры и часто предшествует собственно «панцирному легкому» (в зарубежной литературе используется термин Trapped Lung). Нерасправляемость легкого в таком состоянии вторична по отношению к воспалительному процессу и может быть выявлена зачастую лишь при удалении воздуха или жидкости из плевральной полости . С течением времени и отсутствием возможности создания условий для расправления легкого оно сохраняет измененную форму, то есть становится ригидным. Это происходит за счет активации не только соединительно-тканного компонента в строме легкого ввиду хронической гипоксии и воспаления, но и развития собственно фиброза в висцеральной плевре . К этому приводит длительно персистирующие в плевральной полости воздух и жидкость, а также присоединение инфекционного процесса. При их удалении при помощи аспирации при отсутствии легочной фистулы в плевральной полости сохраняется отрицательное давление без расправления легкого с показателями давления ниже, чем в норме. Это будет способствовать возрастанию градиента давления между таковыми внутри трахеобронхиального дерева и плевральной полостью, что приведет впоследствии к баротравме - повреждению давлением.

«Панцирное легкое» представляет собой измененный орган, который даже при удалении содержимого плевральной полости не может расправиться, то есть полностью занять весь гемиторакс ввиду фиброзных изменений висцеральной плевры, формирования грубых плевральных сращений между париетальной и висцеральной плеврой вследствие хронического воспалительного процесса в легком и плевре и бессимптомного плеврального выпота . Удаление экссудата и воздуха из плевральной полости посредством пункций или при помощи установки дренажной трубки не позволит улучшить дыхательную функцию легкого.

При наличии (бронхоплевральной или альвеолярноплевральной) фистулы легкое также не расправляется, но за счет того что в плевральной полости постоянно персистирует атмосферный воздух и сохраняется атмосферное давление, а при некоторых видах искусственной вентиляции и более высокое. Данное осложнение значительно ухудшает прогноз, летальность у такой категории пациентов составляет до 9,5%. Без дренажа плевральной полости достоверно диагностировать данное состояние нельзя . Дренажная система, по сути, под воздействием отрицательного давления высасывает воздух из самой фистулы, то есть фактически из атмосферного воздуха, что также является фактором дополнительного инфицирования за счет попадания микроорганизмов из атмосферного воздуха в дыхательные пути. Клинически это проявляется активным сбросом воздуха по дренажной трубке на выдохе или при вакуумной аспирации. Вторично может развиваться фиброз висцеральной плевры, что даже при устранении фистулы не будет давать легкому расправиться на всю плевральную полость.

Важно также оттенить особый термин, характеризующий нерасправляемое легкое, pneumothorax ex vacuo - персистирующий пневмоторакс без фистулы и травмы полых органов грудной полости. Не только пневмоторакс может вызвать ателектаз, но также и сам ателектаз может стать условием для развития пневмоторакса при удалении экссудата. Такой пневмоторакс возникает на фоне резкого увеличения отрицательного давления в плевральной полости в сочетании с обструкцией бронхов 1-2 порядка и ниже и не связан с повреждением легкого или висцеральной плевры. При этом в плевральной полости как такового атмосферного воздуха может и не быть, или он персистирует в небольшом количестве. Это состояние может возникать как на спонтанном дыхании, так и у пациентов с ИВЛ, что связано с обструкцией дыхательных путей одной из долей легкого. Такой «пневмоторакс» на фоне основного заболевания может не иметь собственных клинических признаков и не ассоциироваться с ухудшением состояния, а рентгенологически представлен разобщением листков плевры на ограниченном пространстве в проекции верхней или нижней долей (рис. 1). Важнейшим в лечении данного осложнения у пациентов является не установка плеврального дренажа, а устранение вероятной причины обструкции, после которого пневмоторакс разрешается, как правило, самостоятельно . Если же данных за обструкцию бронхиального дерева нет и отсутствует легочная фистула, то причиной такому состоянию будет «панцирное легкое».

Рис. 1. Pneumothorax ex vacuo у пациента с нерасправляемым легким на обзорной рентгенограмме органов грудной клетки

Таким образом, можно сказать, что при нерасправляемом легком при торакоцентезе и установке плеврального дренажа вероятность осложнений значительно увеличивается, поэтому так важно ориентироваться не только на показатели радиологической и ультразвуковой диагностики, но и наблюдать за барическими процессами в плевральной полости, не видимыми на рентгеновской плёнке и при осмотре пациента. При этом некоторыми авторами отмечается, что торакоцентез при нерасправляемом легком значительно болезненнее из-за раздражения плевры отрицательным давлением (менее -20 мм вод. ст.) . Помимо дренирования плевральной полости при нерасправляемом легком, невозможным становится также и химический плевродез ввиду стойкого расхождения листков париетальной и висцеральной плевры.

Важными параметрами, характеризующими описанные процессы в плевральной полости, являются также внутриплевральное давление (Ppl), эластичность плевральной полости (Epl) . В норме на пике вдоха Ppl составляет до -80 cм вод. ст., а конце выдоха: -20 cм вод. cт. Падение усредненного показателя давления плевральной полости ниже -40 cм вод. ст. при удалении патологического содержимого из плевральной полости (пункции плевральной полости) без применения дополнительного разрежения является признаком нерасправляемости легкого. Эластичность плевры подразумевает под собой отношение разности изменения давления до и после удаления определенного объема патологического содержимого (Pliq1 - Pliq2) по отношению к этому самому объему, что можно представить формулой: см вод. ст./л. При нормальном расправлении легкого и наличии в плевральной полости экссудата любой плотности эластичность плевральной полости будет составлять около 5,0 см вод. ст./л, величина показателя больше 14,5 см вод. ст./л говорит о нерасправляемости легкого и формировании «панцирного легкого». Из вышесказанного следует, что количественное измерение давления в плевральной полости является важным диагностическим и прогностическим тестом.

Какими способами можно измерить внутриплевральное давление?

Существуют прямые и непрямые методы измерения этого важного параметра респираторной механики. Прямым является измерение давления непосредственно при торакоцентезе или длительном дренировании плевральной полости через катетер или дренаж, находящийся в ней. Обязательным условием является установка катетера или дренажа в самой низкой позиции имеющегося содержимого плевральной полости. Самым простым вариантом в таком случае является использование водяного столба, для чего может использоваться трубка от внутривенной системы или стерильный столбик из стеклянной трубки, обязательно перед процедурой предварительно из системы выводится воздух. Давление при наличии жидкого содержимого в таком случае определяется за счет высоты столба в трубке относительно места вкола иглы или установленного дренажа, что примерно соответствует общеизвестной методике измерения центрального венозного давления при помощи аппарата Вальдмана . Недостатком данного метода является громоздкость и сложность создания устойчивой конструкции для проведения таких измерений, а также невозможность измерить давление в «сухой» полости.

Также используются и цифровые приборы для определения и регистрации внутриплеврального давления.

Портативный цифровой манометр Compass (Mirador Biomedical, США) используется для измерения давления в полостях организма. Положительной стороной этого портативного манометра является его точность (доказана высокая корреляция с данными при измерении при помощи измерения давления по U-катетеру) и простота в использовании . Недостатками его являются возможность его использования лишь один раз и невозможность записи данных на цифровой носитель, а также стоит отметить высокую стоимость такого манометра (около 40 $ за одно устройство).

Электронный плевральный манометр обычно состоит из катетера плевральной полости, разветвителя или разобщителя, одна магистраль которого идёт к системе удаления экссудата, другая к датчику давления и аналого-цифровому преобразователю, который в свою очередь позволяет выводить изображение на экран или производить запись на цифровой носитель (рис. 2) . В исследованиях J.T.Huggins et al. используются наборы для инвазивного мониторинга артериального давления (фирма Argon, США), аналого-цифровой преобразователь CD19A (фирма Validyne Engineering, США), для регистрации данных на персональном компьютере используется пакет программ Biobench 1.0 (фирма National Instruments, США). Разобщителем может, к примеру, являться устройство, описанное Roe . Преимущество этой системы перед ранее названным портативным датчиком, несомненно, состоит в возможности записи данных на цифровой носитель, а также точности получаемых данных и многоразовом использовании. Недостатком данного метода является сложность организации рабочего места для проведения манометрии. Помимо самого оператора, который производит манипуляцию, необходим дополнительный персонал для включения и записи данных. Также разобщитель магистралей в данном комплексе должен соответствовать требованиям асептики и антисептики и, в идеале, быть одноразовым .

Рис. 2. Схема электронного манометра для измерения внутриплеврального давления

Недостатками такого метода являются выраженная зависимость получаемых данных от чувствительности датчика, состояния переходника-трубки (возможная окклюзия её твердым содержимым, попадание воздуха), особенностей мембраны датчика.

Определение давления такими методами происходит опосредованно через трубку-дренаж, так как сам датчик в плевральной полости не находится. Определение показателей давления как на проксимальном конце дренажа, так и в самой магистрали может иметь высокую диагностическую ценность. В патенте J. Croteau описывается аспирационный аппарат для дренирования плевральной полости с двумя заранее настраиваемыми уровнями разрежения. Первый режим - терапевтический, зависит от клинической ситуации. Второй режим, с более высоким уровнем разрежения, включается при изменении давления между дистальным и проксимальным участком дренажной трубки, в которой соответственно установлены два датчика давления, например, более чем на 20 мм вод. ст. (данный параметр является настраиваемым). Это способствует устранению обструкции дренажа и сохранению его работоспособности. Также в описанном аспираторе предусмотрен подсчёт частоты дыхательных движений и подача сигнала (в т.ч. звукового) при ее изменениях. Таким образом, принцип выбора разрежения основан на измерении давления в дренаже. Недостатком является отсутствие ассоциации переключения уровней разрежения с физиологическими колебаниями давления в плевральной полости. Изменение давления при этом способе служит для устранения обструкции дренажной трубки . Такой мониторинг может предсказать закупоривание и дислокацию дренажа, что важно для профилактики осложнений и принятия быстрого решения о дальнейшей лечебной тактике.

Непрямым методом является чреспищеводная манометрия в грудном отделе пищевода на точке 40 см от резцов или ноздри у взрослого человека. Определение внутрипищеводного давления (Pes) ограниченно используется для определения оптимального положительного давления в конце выдоха (PEEP - positive expiration end pressure) у пациентов с искусственной вентиляцией легких и дыхательного объема вентиляции при невозможности измерить внутриплевральное давление прямым методом. Внутрипищеводное давление представляет собой усредненное значение давления в плевральных полостях без вовлечения плевры в патологический процесс и позволяет рассчитать транспульмональный градиент давления (Pl = Palv - Ppl, где Palv - давление в альвеолах), но не даёт информативности об определении Ppl в определенной полости, тем более при нерасправляемом легком . Недостатками данного метода являются неспецифичность измерения по отношению к пораженной стороне, а также недостоверность данных при наличии патологического процесса в средостении любого рода и зависимость от положения тела пациента (в горизонтальном положении давление выше). Могут отмечаться значительные погрешности при высоком внутрибрюшном давлении, ожирении.

У новорожденных описана возможность измерения внутриплеврального давления непрямым методом за счет определения движения костей свода черепа относительно друг друга и давления в дыхательных путях . Данный метод автор предлагает для дифференциальной диагностики апноэ новорождённых центрального генеза и обструктивного характера. Основным недостатком данного метода является отсутствие возможности мониторинга ввиду того что для измерения давления необходимо сделать манёвр Вальсальвы, а именно перекрыть канюлей ноздри (новорождённые, как известно, дышат только через ноздри) при выдохе через закрытые канюлей с датчиком давления ноздри. Также данный метод не позволяет количественно определить внутриплевральное давление, а лишь используется для определения изменения давления при вдохе и выдохе для диагностики обструкции дыхательных путей.

Методы плевральной манометрии, которые чаще используются на практике, связаны с созданием сообщения плевральной полости с окружающей средой посредством пункционной иглы, катетера или уже имеющегося дренажа плевральной полости. Определяющим в получении достоверных данных при измерении давления является создание условий для манометрии. Так, при лечебно-диагностической пункции плевральной полости без использования активной аспирации показатель давления будет меняться по мере удаления жидкости под действием гравитации. При этом можно вычислить эластичность плевральной полости и диагностировать «нерасправляемое легкое» (рис. 3). При использовании активной аспирации по дренажу или катетеру мониторирование внутриплеврального давления не будет иметь диагностической ценности, так как на показатель давления в магистрали будут влиять внешние силы, помимо гравитации. Измерение давления в течение небольшого промежутка времени без удаления содержимого с целью оценки состояния плевральной полости также приемлемо, однако несёт меньшую информативность ввиду невозможности вычисления эластичности плевры.

Рис. 3. График измерения внутриплеврального давления при терапевтическом торакоцентезе (удалении экссудата)

Всё-таки стоит отметить, что в настоящее время даже в ведущих медицинских центрах мира рутинное использование плевральной манометрии не получило широкого распространения. Причиной этому являются необходимость развертывания дополнительного оборудования при проведении плевральной пункции (подключение и проверка работоспособности манометра, соединение его с иглой или катетером, который вводится в плевральную полость) и затрачиваемое на это время, потребность в дополнительном обучении медицинского персонала для работы с манометром . F. Maldonado исходя из анализа исследований по измерению внутриплеврального давления при нерасправляемом легком утверждает, что на настоящий момент нельзя лишь на основании данных о внутриплевральном давлении считать легкое нерасправляемым и выставлять показания к прекращению или продолжению удаления патологического отделяемого из плевральной полости. По его мнению, стоит обратить внимание не только на эластичность плевры, но и на то, где появляется «точка воздействия» на кривой внутриплеврального давления (график), после которой легкое становится нерасправляемым и процедуру торакоцентеза стоит прекращать. Однако на данный момент исследований, где такая «точка воздействия» рассматривалась как предиктор, нет.

Так как изменения показаний респираторной механики плевральной полости являются предиктором множества осложнений и исходов, то их мониторинг не только позволит избежать многих осложнений, но также и выбрать действительно подходящий способ лечения для пациентов с таким патологическим состоянием. Таким образом, важнейшим в ведении пациентов с такими патологическими состояниями, как нерасправляемое легкое и длительный сброс воздуха, является определение внутриплеврального давления и его эластичности для подбора адекватного режима аспирации и других особенностей дренирования плевральной полости как до радикального оперативного лечения, так и при невозможности проведения такового. Мониторинг давления и других параметров должен осуществляться постоянно при нахождении дренажной трубки в плевральной полости, а также при проведении терапевтического и диагностического торакоцентеза. С этим согласны такие авторы, посвятившие не одно крупное клиническое исследование по изучению внутриплеврального давления, как J.T. Huggins, M.F. Pereyra и др. Но, к сожалению, простых и доступных средств для проведения таких исследований мало, что подтверждает необходимость изучения вопросов внутриплеврального давления для повышения диагностической ценности, таких как колебания давления на разных фазах дыхания в физиологии и при патологических состояниях, связи функциональных проб в диагностике заболеваний органов дыхания с респираторной механикой плевральной полости.

Библиографическая ссылка

Хасанов А.Р., Коржук М.С., Ельцова А.А. К ВОПРОСУ О ДРЕНИРОВАНИИ ПЛЕВРАЛЬНОЙ ПОЛОСТИ И ИЗМЕРЕНИИ ВНУТРИПЛЕВРАЛЬНОГО ДАВЛЕНИЯ. ПРОБЛЕМЫ И РЕШЕНИЯ // Современные проблемы науки и образования. – 2017. – № 5.;
URL: http://science-education.ru/ru/article/view?id=26840 (дата обращения: 12.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Легкие расположены в геометрически закрытой полости, образованной стенками грудной клетки и диафрагмой. Изнутри грудная полость выстлана плеврой, состоящей из двух листков. Один листок прилегает к грудной клетке, другой - к легким. Между листками имеется щелевидное пространство, или плевральная полость, заполненная плевральной жидкостью.

Грудная клетка в утробном периоде и после рождения растет быстрее легких. Кроме того, плевральные листки обладают большой всасывающей способностью. Поэтому в плевральной полости устанавливается отрицательное давление. Так, в альвеолах легких давление равно атмосферному - 760, а в плевральной полости - 745-754 мм рт. ст. Эти 10-30 мм и обеспечивают расширение легких. Если проколоть грудную стенку так, чтобы воздух вошел в плевральную полость, то легкие тут же спадутся (ателектаз). Это произойдет потому, что давление атмосферного воздуха на наружную и внутреннюю поверхность легких сравняется.

Легкие в плевральной полости всегда находятся в несколько растянутом состоянии, но во время вдоха их растяжение резко увеличивается, а при выдохе уменьшается. Это явление хорошо демонстрирует модель, предложенная Дондерсом. Если подобрать бутыль, по объему соответствующую величине легких, предварительно поместив их в эту бутыль, и вместо дна натянуть резиновую пленку, выполняющую роль диафрагмы, то легкие будут расширяться при каждом оттягивании резинового дна. Соответственно будет изменяться величина отрицательного давления внутри бутыли.

Отрицательное давление можно измерить, если ввести в плевральное пространство инъекционную иглу, соединенную с ртутным манометром. У крупных животных оно достигает при вдохе 30-35, а при выдохе уменьшается до 8-12 мм рт. ст. Колебания давления при вдохе и выдохе влияют на движение крови по венам, расположенным в грудной полости. Так как стенки вен легкорастяжимы, то отрицательное давление передается на них, что способствует расширению вен, их кровенаполнению и возврату венозной крови в правое предсердие, при вдохе приток крови к сердцу усиливается.

Типы дыхания.У животных различают три типа дыхания: реберный, или грудной,- при вдохе преобладает сокращение наружных межреберных мышц; диафрагмальный, или брюшной,- расширение грудной клетки происходит преимущественно за счет сокращения диафрагмы; эеберно-брюшной - вдох обеспечивается в равной степени межреберными мышцами, диафрагмой и брюшными мышцами. Последний тип дыхания свойственен сельскохозяйственным животным. Изменение типа дыхания может свидетельствовать о заболевании органов грудной или брюшной полости. Например, при заболевании органов брюшной полости преобладает реберный тип дыхания, так как животное оберегает больные органы.

Жизненная и общая емкость легких.В покое крупные собаки и овцы выдыхают в среднем 0,3-0,5, лошади

5-6 л воздуха. Этот объем называют дыхательным воздухом. Сверх данного объема собаки и овцы могут вдохнуть еще 0,5-1, а лошади - 10-12 л - дополнительный воздух. После нормального выдоха животные могут выдохнуть приблизительно такое же количество воздуха - резервный воздух. Таким образом, при нормальном, неглубоком дыхании у животных грудная клетка не расширяется до максимального предела, а находится на некотором оптимальном уровне, при необходимости объем ее может увеличиваться за счет максимального сокращения мышц инспираторов. Дыхательный, дополнительный и резервный объемы воздуха составляют жизненную емкость легких. У собак она составляет 1.5 -3 л, у лошадей - 26-30, у крупного рогатого скота - 30-35 л воздуха. При максимальном выдохе з легких еще остается немного воздуха, этот объем называют остаточным воздухом. Жизненная емкость легких и остаточный воздух составляют общую емкость легких. Величина жизненной емкости легких может значительно уменьшиться при некоторых заболеваниях, что приводит к нарушению газообмена.

Определение жизненной емкости легких имеет большое значение для выяснения физиологического состояния организма в норме и при патологии. Ее можно определить с помощью специального аппарата, называемого водяным спирометром (аппаратом «Спиро 1-В»). К сожалению, эти способы трудно применимы в производственных условиях. У лабораторных животных жизненную емкость определяют под наркозом, при вдыхании смеси с высоким содержанием С02 . Величина наибольшего выдоха примерно соответствует жизненной емкости легких. Жизненная емкость изменяется в зависимости от возраста, продуктивности, породы и других факторов.

Легочная вентиляция.После спокойного выдоха в легких остается резервный, или остаточный, воздух, называемый также альвеолярным воздухом. Около 70 % вдыхаемого воздуха непосредственно поступает в легкие, остальные 25-30 % участия в газообмене не принимают, так как он остается в верхних дыхательных путях. Объем альвеолярного воздуха у лошадей составляет 22 л. Поскольку при спокойном дыхании лошадь вдыхает 5 л воздуха, из которых в альвеолы поступает только 70 %, или 3,5 л, то при каждом вдохе в альвеолах вентилируется только "/б часть воздуха (3,5:22). Отношение вдыхаемого воздуха к альвеолярному называют коэффициентом легочной вентиляции, а количество воздуха, проходящего через легкие за 1 мин,- минутным объемом легочной вентиляции. Минутный объем - величина переменная, зависимая от частоты дыхания, жизненной емкости легких, интенсивности работы, характера рациона, патологического состояния легких и других факторов.

Воздухоносные пути (гортань, трахея, бронхи, бронхиолы) не принимают непосредственного участия в газообмене, поэтому их называют вредным пространством. Однако они имеют большое значение в процессе дыхания. В слизистой оболочке носовых ходов и верхних дыхательных путях имеются серозно-слизистые клетки и мерцательный эпителий. Слизь улавливает пыль и увлажняет дыхательные пути. Мерцательный эпителий движениями своих волосков способствует удалению слизи с частицами пыли, песка и другими механическими примесями в область носоглотки, откуда она выбрасывается. В верхних дыхательных путях находится множество чувствительных рецепторов, раздражение которых вызывает защитные рефлексы, например кашель, чихание, фырканье. Данные рефлексы способствуют выведению из бронхов частиц пыли, корма, микробов, ядовитых веществ, представляющих опасность для организма. Кроме того, вследствие обильного кровоснабжения слизистой оболочки носовых ходов, гортани, трахеи согревается вдыхаемый воздух.

Объем легочной вентиляции несколько меньше количества крови, протекающей через малый круг кровообращения в единицу времени. В области верхушек легких альвеолы вентилируются менее эффективно, чем у основания, прилегающего к диафрагме. Поэтому в области верхушек легких вентиляция относительно преобладает над кровотоком. Наличие вено-артериальных анастомозов и сниженное отношение вентиляции к кровотоку в отдельных частях легких - основная причина более низкого напряжения кислорода и более высокого напряжения двуокиси углерода в артериальной крови по сравнению с парциальным давлением этих газов в альвеолярном воздухе.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха.Атмосферный воздух содержит 20,82 % кислорода, 0,03 % двуокиси углерода и 79,03 % азота. В воздухе животноводческих помещений обычно содержится больше двуокиси углерода, водяных паров, аммиака, сероводорода и др. Количество кислорода может быть меньше, чем в атмосферном воздухе.

Выдыхаемый воздух содержит в среднем 16,3 % кислорода, 4 % двуокиси углерода, 79,7 % азота (эти показатели приведены в пересчете на сухой воздух, то есть за вычетом паров воды, которыми насыщен выдыхаемый воздух). Состав выдыхаемого воздуха непостоянен и зависит от интенсивности обмена веществ, объема легочной вентиляции, температуры атмосферного воздуха и др.

Альвеолярный воздух отличается от выдыхаемого большим содержанием двуокиси углерода - 5,62 % и меньшим кислорода - в среднем 14,2-14,6, азота - 80,48 %. Выдыхаемый воздух содержит воздух не только альвеол, но и «вредного пространства», где он имеет такой же состав, как и атмосферный.

Азот в газообмене не участвует, но процентное содержание его во вдыхаемом воздухе несколько ниже, чем в выдыхаемом и альвеолярном. Это объясняется тем, что объем выдыхаемого воздуха несколько меньше, чем вдыхаемого.

Предельно допустимая концентрация двуокиси углерода в скотных дворах, конюшнях, телятниках - 0,25 %; но уже 1 % С 0 2 вызывает заметную одышку, и легочная вентиляция увеличивается на 20 %. Содержание двуокиси углерода выше 10 % ведет к смерти.

В организме человека каждый орган расположен отдельно: это необходимо для того, чтобы деятельность одних органов не мешала работе других, а также для того, чтобы замедлить быстрое распространение инфекции по организму. Роль такого «ограничителя» для легких выполняет серозная оболочка, состоящая из двух листков, пространство между которыми называется плевральная полость. Но защита легких – не единственная ее функция. Для того чтобы понять, что такое плевральная полость и какие задачи она выполняет в организме, необходимо подробно рассмотреть ее строение, участие в разных физиологических процессах, ее патологии.

Строение плевральной полости

Сама плевральная полость – это промежуток между двумя листками плевры, содержащий в себе небольшое количество жидкости. У здорового человека полость макроскопически не видна. Поэтому целесообразно рассматривать не саму полость, а ткани, которые ее образуют.

Листки плевры

Плевра имеет внутренний и наружный слой. Первый называют висцеральной оболочкой, второй – париетальной мембраной. Незначительное расстояние между ними и является плевральной полостью. Переход нижеописанных слоев из одного в другой происходит в области ворот легкого – упрощенно говоря, в том месте, где легкие соединяются с органами средостения:

  • сердцем;
  • вилочковой железой;
  • пищеводом;
  • трахеей.

Висцеральный слой

Внутренний слой плевры покрывает каждое легкое так плотно, что его невозможно отделить, не повреждая целостности легочных долей. Оболочка имеет складчатое строение, поэтому она способна разделять доли легких друг от друга, обеспечивая их легкое скольжение в процессе дыхания.

В этой ткани количество кровеносных сосудов превалирует над лимфатическими. Именно висцеральный слой продуцирует жидкость, заполняющую плевральную полость.

Париетальный слой

Наружный слой плевры срастается со стенками грудной клетки с одной стороны, а с другой, обращенной к плевральной полости, он покрыт мезотелием, который препятствует трению между висцеральным и париетальным слоем. Расположен приблизительно от точки на 1,5 см выше ключицы (купол плевры) до точки на 1 ребро ниже легкого.

Наружная часть париетального слоя имеет три зоны, в зависимости от того, с какими частями грудной полости она соприкасается:

  • реберная;
  • диафрагмальная;
  • средостенная.

В париетальном слое большое количество лимфатических сосудов, в отличие от висцерального слоя. При помощи лимфатической сети из плевральной полости выводятся белки, ферменты крови, различные микроорганизмы и другие плотные частицы, а также реабсорбируется лишняя париетальная жидкость.

Плевральные синусы

Расстояние между двумя париетальными оболочками называется плевральными синусами.

Их существование в организме человека обусловлено тем, что границы легких и плевральной полости не совпадают: объем последней больше.

Различают 3 вида синусов плевры, каждый из них следует рассмотреть подробнее.

  1. Реберно-диафрагмальный синус – расположен вдоль нижней границы легкого между диафрагмой и грудной клеткой.
  2. Диафрагмально-медиастинальный – расположен в месте перехода медиастинальной части плевры в диафрагмальную.
  3. Реберно-медиастинальный синус — расположен у переднего края левого легкого на протяжении сердечной вырезки, справа выражен очень слабо.

Реберно-диафрагмальный синус условно может считаться самым главным синусом, во-первых из-за своего размера, который может достигать 10 см (иногда и больше), во-вторых, потому что в нем скапливается патологическая жидкость при различных заболеваниях и травмах легких. Если человеку требуется легочная пункция, забор жидкости на исследование будет производиться путем прокола (пункции) именно диафрагмального синуса.

Другие два синуса имеют менее выраженное значение: они небольшие по размеру и не имеют значения в процессе диагностики, но с точки зрения анатомии знать об их существовании полезно.

Таким образом, синусы – это запасные пространства плевральной полости, «карманы», сформированные париетальной тканью.

Основные свойства плевры и функции плевральной полости

Поскольку плевральная полость является частью легочной системы, ее основной функцией является помощь в осуществлении процесса дыхания.

Давление в плевральной полости

Для понимания процесса дыхания нужно знать, что давление между внешним и внутренним слоем плевральной полости называют отрицательным, так как оно ниже уровня атмосферного давления.

Чтобы представить себе это давление и его силу, можно взять два кусочка стекла, намочить их и прижать друг к другу. Разделить их на два отдельных фрагмента будет сложно: стекло будет легко скользить, но убрать одно стекло от другого, разведя в две стороны, будет попросту невозможно. Именно за счет того, что в герметичной плевральной полости стенки плевры соединены и могут двигаться относительно друг друга только путем скольжения, и осуществляется процесс дыхания.

Участие в дыхании

Процесс дыхания может быть осознанным или нет, но его механизм одинаков, что можно увидеть на примере вдоха:

  • человек делает вдох;
  • его грудная клетка расширяется;
  • легкие расправляются;
  • воздух проникает в легкие.

После расширения грудной клетки незамедлительно следует расправление легких, потому что наружная часть плевральной полости (париетальная) соединена с грудной клеткой, а значит, при расширении последней следует за ней.

Из-за отрицательного давления внутри плевральной полости внутренняя часть плевры (висцеральная), которая плотно сцеплена с легкими, тоже следует за париетальным слоем, заставляя легкое расправляться и впускать в себя воздух.

Участие в кровообращении

В процессе дыхания отрицательное давление внутри плевральной полости влияет и на кровоток: при вдохе вены расширяются, и приток крови к сердцу увеличивается, при выдохе – приток крови уменьшается.

Но говорить о том, что плевральная полость является полноправным участником системы кровообращения — некорректно. То, что приток крови к сердцу и вдох воздуха синхронизирован, является лишь основанием для того, чтобы своевременно заметить попадание воздуха в кровоток из-за травмы крупных вен, выявить дыхательную аритмию, которая официально не является заболеванием и не причиняет своим обладателям никаких хлопот.

Жидкость в полости плевры

Плевральная жидкость – та самая жидкая серозная прослойка в капиллярах между двумя слоями плевральной полости, которая обеспечивает их скольжение и отрицательное давление, играющее ведущую роль в процессе дыхания. Ее количество в норме составляет около 10 мл для человека весом в 70 кг. Если плевральной жидкости будет больше нормы – она не даст легкому расправиться.

Кроме естественной плевральной жидкости, в легких могут скапливаться также и патологические.

Название Причина Симптомы
Транссудат – естественный выпот в плевральную полость, но количество жидкости при этом больше, чем требует физиологическая норма. Сердечная и почечная недостаточность, проведение перитонеального диализа, онкология, нарушение естественного процесса всасывания плевральной жидкости париетальным слоем. Одышка, боли в груди, сухой кашель.
Экссудат – жидкость в плевральной полости, появляющаяся в результате воспалительного процесса.

Выделяют:

Серозный Вирусы, аллергены. Лихорадка, отсутствие аппетита, головные боли, мокрый кашель, одышка, боли в груди.
Фиброзный туберкулез, онкология, эмпиема.
Гнойный Бактерии и грибки
Геморрагический Туберкулезный плеврит
Кровь Повреждение сосудов грудной клетки Тяжело дышать, слабость, обмороки, тахикардия.
Лимфа Повреждение лимфатического потока в листке плевры (чаще из-за травмы или хирургического вмешательства) Одышка, боль в груди, сухой кашель, слабость.

Устранение патологической жидкости из плевральной полости всегда предполагает проведение правильной диагностики, а затем – лечение причины возникновения симптома.

Патологии плевры

Патологическая жидкость может заполнять плевральную полость в результате разных заболеваний, иногда напрямую не связанных с дыхательной системой.

Если говорить о патологиях самой плевры, то можно выделить следующие:

  1. Спайки в плевральной области – образование спаек в плевральной полости, которые нарушают процесс скольжения слоев плевры и приводят к тому, что человеку тяжело и больно дышать.
  2. Пневмоторакс – скопление воздуха в плевральной полости в результате нарушения герметичности плевральной полости, из-за которого у человека появляется резкая боль в груди, кашель, тахикардия, чувство паники.
  3. Плеврит – воспаление плевры с выпадением фибрина или скоплением экссудата, (то есть сухой или выпотный плеврит). Возникает на фоне инфекций, опухолей и травм, проявляется в виде кашля, тяжести в груди, лихорадки.
  4. Осумкованный плеврит – воспаление плевры инфекционного генеза, реже – системных заболеваний соединительной ткани, при котором экссудат скапливается только в части плевры, будучи отделенным от остальной части полости плевральными спайками. Может протекать как без симптомов, так и с выраженной клинической картиной.

Диагностика патологий производится при помощи рентгена грудной клетки, компьютерной томографии, пункции. Лечение осуществляется преимущественно медикаментозным способом, иногда может потребоваться хирургическое вмешательство: откачивание воздуха из легких, выведение экссудата, удаление сегмента или доли легкого.

Давление в плевральной полости (щели)

Легкие и стенки грудной полости покрыты серозной оболочкой -- плеврой. Между листками висцеральной и париетальной плевры имеется узкая (5--10 мкм) щель, содержащая серозную жидкость, по составу сходную с лимфой. Легкие постоянно находятся в растянутом состоянии.

Если в плевральную щель ввести иглу, соединенную с манометром, можно установить, что давление в ней ниже атмосферного. Отрицательное давление в плевральной щели обусловлено эластической тягой легких, т. е. постоянным стремлением легких уменьшить свой объем. В конце спокойного выдоха, когда почти все дыхательные мышцы расслаблены, давление в плевральной щели (PPl)приблизительно--3 мм рт. ст. Давление в альвеолах (Ра) в это время равно атмосферному. Разность Ра-- -- РРl = 3 мм рт. ст. носит название транспульмо-нального давления (P1). Таким образом, давление в плевральной щели ниже, чем давление в альвеолах, на величину, создаваемую эластической тягой легких.

При вдохе вследствие сокращения инспираторных мышц объем грудной полости увеличивается. Давление в плевральной щели становится более отрицательным. К концу спокойного вдоха оно снижается до --6 мм рт. ст. Вследствие увеличения ранспульмонального давления легкие расправляются, их объем увеличивается за счет атмосферного воздуха. Когда инспираторные мышцы расслабляются, упругие силы растянутых легких и стенок брюшной полости уменьшают транспульмональное давление, объем легких уменьшается -- наступает выдох.

Механизм изменения объема легких при дыхании может быть продемонстрирован с помощью модели Дондерса.

При глубоком вдохе давление в плевральной щели может снизиться до --20 мм рт. ст.

Во время активного выдоха это давление может стать положительным, тем не менее оставаясь ниже давления в альвеолах на величину эластической тяги легких.

В плевральной щели в обычных условиях не бывает газов. Если ввести некоторое количество воздуха в плевральную щель, он постепенно рассосется. Всасывание газов из плевральной щели происходит вследствие того, что в крови мелких вен малого круга кровообращения напряжение растворенных газов ниже, чем в атмосфере. Накоплению в плевральной щели жидкости препятствует онкотическое давление: в плевральной жидкости содержание белков значительно ниже, чем в плазме крови. Имеет значение также относительно низкое гидростатическое давление в сосудах малого круга кровообращения.

Упругие свойства легких. Эластическая тяга легких обусловлена тремя факторами:

1) поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол; 2) упругостью ткани стенок альвеол вследствие наличия в них эластических волокон; 3) тонусом бронхиальных мышц. Устранение сил поверхностного натяжения (заполнение легких солевым раствором) снижает эластическую тягу легких на 2/3.Если бы внутренняя поверхность альвеол была покрыта водным раствором, поверх-

ностное натяжение должно было бы быть в 5--8 раз больше. В таких условиях наблюдалось бы полное спадение одних альвеол (ателектаз) при перерастяжении других. Этого не происходит потому, что внутренняя поверхность альвеол выстлана веществом, имеющим низкое поверхностное натяжение, так называемым сурфактантом. Выстилка имеет толщину 20--100 нм. Она состоит из липидов и белков. Сурфактант образуется специальными клетками альвеол -- пневмоцитами II типа. Пленка сурфактанта обладает замечательным свойством: уменьшение размеров альвеол сопровождается снижением поверхностного натяжения; это важно для стабилизации состояния альвеол. Образование сурфактанта усиливается парасимпатическими влияниями; после перерезки блуждающих нервов оно замедляется.

Количественно упругие свойства легких принято выражать так называемой растяжимостью: где Д V1 -- изменение объема легких; ДР1 -- изменение транспульмонального давления.

У взрослых она равна приблизительно 200 мл/см вод. ст. У детей грудного возраста растяжимость легких гораздо ниже -- 5--10 мл/см вод. ст. Данный показатель изменяется при заболеваниях легких и используется с диагностическими целями.