Хром – тугоплавкий, очень твердый металл, обладающий необыкновенной стойкостью к коррозии. Эти уникальные качества и обеспечили ему столь высокую востребованность в промышленности и строительстве.

Потребитель чаще всего знаком не с изделиями из хрома, а с предметами, покрытыми тонким слоем металла. Ослепительный зеркальный блеск такого покрытия привлекателен сам по себе, однако имеет и чисто практическое значение. Хром устойчив к коррозии и способен защитить сплавы и металлы от ржавчины.

И сегодня мы ответим на вопросы о том, хром — это металл или неметалл, и если металл, то какой: черный или цветной, тяжелый или легкий. Также мы расскажем в каком виде хром встречается в природе, и каковы отличия хрома от и других подобных металлов.

Для начала поговорим о том, как выглядит хром, каковы металлы его содержащие, и в чем особенность такого вещества. Хром — это типичный металл серебристо-голубоватого цвета, тяжелый, по плотности превосходит , к тому же относится к категории тугоплавких – температура его плавления и кипения очень велики.

Элемент хром размещается в побочной подгруппе 6 группы в 4 периоде. Близок по свойствам к молибдену и вольфраму, хотя имеет и заметные отличия. Последние чаще всего проявляют лишь высшую степень окисления, в то время как хром проявляет валентность и два, и три, и шесть. Это означает, что элемент образует множество разнообразных соединений.

Именно соединения и дали название самому элементу – от греческого краска, цвет. Дело в том, что его соли и оксиды окрашены в самые разнообразные яркие цвета.

Данное видео расскажет о том, что такое хром:

Особенности и отличия по сравнению с другими металлами

При изучении металла наибольший интерес вызывали 2 свойства вещества: твердость и тугоплавкость. Хром относится к наиболее твердым металлам – занимает пятое место и уступает урану, иридию, вольфраму и бериллию. Однако качество это оказалось невостребованным, поскольку у металла были обнаружены более важные для промышленности свойства.

Хром плавится при 1907 С. Вольфраму или молибдену по этому показателю он уступает, но все равно относится к тугоплавким веществам. Правда, на температуру его плавления сильно влияют примеси.

  • Как многие из металлов, устойчивых к коррозии, хром образует на воздухе тонкую и очень плотную оксидную пленку. Последняя прикрывает доступ кислорода, азота и влаги к веществу, что и делает его неуязвимым. Особенность в том, что это качество он передает своему сплаву с : в присутствии элемента увеличивается потенциал а-фазы железа и в итоге сталь на воздухе тоже покрывается плотной оксидной пленкой. Это и есть секрет стойкости нержавеющей .
  • Являясь тугоплавким веществом, металл повышает и температуру плавления сплава. Жаропрочные и жаростойкие стали обязательно включают долю хрома, причем порой очень большую – до 60%. Еще более сильный эффект оказывает добавка и , и хрома.
  • Хром образует сплавы и со своими собратьями по группе – молибденом и вольфрамом. Их используют для покрытия деталей, где требуется особенно высокая износостойкость в условиях высокой температуры.

Достоинства и недостатки хрома описаны ниже.

Хром как металл (фото)

Достоинства

Как и всякое другое вещество, металл обладает своими достоинствами и недостатками, а их совокупность определяет его использование.

  • Безусловный плюс вещества – коррозийная стойкость и возможность передавать это свойство своим сплавам. Хромовые нержавеющие стали имеют огромное значение, поскольку разом решили целый ряд проблем при строительстве судов, подводных лодок, каркасов зданий и так далее.
  • Устойчивость к коррозии обеспечивают другим способом – покрывают предмет тонким слоем металла. Популярность этого метода очень велика, на сегодня существует не меньше десятка способов хромирования в разных условиях и для получения разного результата.
  • Хромовый слой создает яркий зеркальный блеск, так что к хромированию прибегают не только для целей защиты сплава от коррозии, но и для получения эстетичного внешнего вида. Причем современные методы хромирования позволяют создать покрытие на любом материале – не только на металле, но и на пластике, и на керамике.
  • Получение жаропрочной стали при добавке хрома тоже стоит отнести к достоинствам вещества. Есть множество областей, где металлические детали должны работать при высоких температурах, а железо само по себе такой стойкостью к нагрузкам при температуре не обладает.
  • Из всех тугоплавких веществ он наиболее устойчив к кислотам и основаниям.
  • Плюсом вещества можно считать и его распространенность – 0,02% в земной коре, и относительно простой способ добычи и получения. Конечно, он требует энергозатрат, но не сравнить со сложной , например.

Недостатки

К недостаткам стоит отнести качества, не позволяющие в полной мере использовать все свойства хрома.

  • В первую очередь, это сильная зависимость физических, а не только химических свойств от примесей. Даже температуру плавления металла было сложно установить, так как при наличии ничтожной доли азота или углерода показатель заметно менялся.
  • Несмотря на более высокую электропроводность по сравнению с , хром гораздо меньше используется в электротехнике и стоимость его довольно высока. Изготовить из него что-либо намного труднее: высокая температура плавления и твердость заметно ограничивают применение.
  • Чистый хром является ковким металлом, содержащий примеси становится очень твердым. Чтобы получить хотя бы относительно пластичный металл, его приходится подвергать дополнительной обработке, что, конечно, увеличивает расходы на изготовление.

Структура металла

Кристалл хрома имеет объемно-центрированную кубическую решетку, а=0,28845 нм. Выше температуры в 1830 С можно получить модификацию с гранецентрированной кубической решеткой.

При температуре в +38 С фиксируется фазовый переход второго рода с увеличением объема. При этом кристаллическая решетка вещества не изменяется, а вот его магнитные свойства становятся совершенно другими. До этой температуры – точки Нееля, хром проявляет свойства антиферромагнетика, то есть, является веществом, которое намагнитить практически невозможно. Выше точки Нееля металл становится типичным парамагнетиком, то есть, проявляет магнитные свойства в присутствии магнитного поля.

Свойства и характеристики

В нормальных условиях металл довольно инертен – и благодаря оксидной пленке и просто по природе своей. Однако при повышении температуры вступает в реакцию и с простыми веществами, и с кислотами, и с основаниями. Его соединения очень разнообразны и применяются очень широко. Физические характеристики металла, как упоминалось, сильно зависят от количества примесей. На практике дело имеют с хромом с чистотой до 99,5%. таковы:

  • температура плавления – 1907 С. Эта величина служит границей между тугоплавкими и обычными веществами;
  • температура кипения – 2671 С;
  • твердость по шкале Мооса – 5;
  • электропроводность – 9 · 106 1/(Ом м). По этому показателю хром уступает только серебру, и золоту;
  • удельное сопротивление –127 (Ом мм2)/м;
  • теплопроводность вещества составляет 93,7 Вт/(м K);
  • удельная теплоемкость –45 Дж/(г K).

Теплофизические характеристики вещества несколько аномальны. В точке Нееля, где изменяется объем металла, коэффициент его теплового расширения резко увеличивается и продолжает расти с увлечением температуры. Также аномально ведет себя и теплопроводность – падает в точке Нееля и уменьшается при нагреве.

Элемент относится к числу необходимых: в человеческом организме ионы хрома являются участниками углеводного обмена и процесса регулировки выделения инсулина. Суточная доза составляет 50–200 мкг.

Хром нетоксичен, хотя в виде металлического порошка может вызвать раздражение слизистой. Трехвалентные его соединения тоже относительно безопасны и даже применяются в пищевой и спортивной промышленности. А вот шестивалентные для человека являются ядом, вызывают тяжелые поражения дыхательных путей и ЖКТ.

О производстве и цене на металл хром за кг сегодня мы поговорим далее.

В этом видеоролике будет показано, является ли покрытие хромовым:

Производство

В большом количестве разных минералов – часто сопровождает и . Однако его содержание недостаточное, чтобы иметь промышленное значение. Перспективными являются лишь породы, включающие не менее 40% элемента, поэтому пригодных для добычи минералов немного, в основном это хромовый железняк или хромит.

Добывают минерал шахтным и карьерным методом в зависимости от глубины залегания. А так как руда изначально содержит большую долю металла, то практически никогда не обогащается, что, соответственно, упрощает и удешевляет процесс производства.

Для легирования стали используется около 70% добытого металла. Причем применяют его зачастую не в чистом виде, а в виде феррохрома. Последний можно получить прямо в шахтной электропечи или доменной – так получают углеродистый феррохром. Если требуется соединение с низким содержанием углерода, прибегают к алюминотермическому методу.

  • Этим способом получают и чистый хром, и феррохром. Для этого в плавильную шахту загружают шихту, включающую хромистый железняк, оксид хрома, натриевую селитру и . Первую порцию – запальная смесь, поджигают, а остальную часть шихты загружают в расплав. В конце добавляют флюс – известь, чтоб облегчить извлечение хрома. Плавка занимает около 20 минут. После некоторого охлаждения шахту наклоняют, выпускают шлак, снова возвращают в исходное положение и вновь наклоняют, теперь уже в изложницу выводится и хром, и шлак. После охлаждения полученный блок разделяют.
  • Применяют и другой метод – металлотермической плавки. Проводится она в электропечи в поворачивающейся шахте. Шихту здесь разделяют на 3 части, каждая отличается составом. Этот метод позволяет извлечь большее количество хрома, но, главное – сокращает расход .
  • Если же требуется получить химически чистый металл, прибегают к лабораторному методу: высаживают кристаллы путем электролиза растворов хроматов.

Стоимость металла хром за 1 кг заметно колеблется, поскольку зависит от объема выпускаемого металлопроката – главного потребителя элемента. В январе 2017 года 1 тонна металла оценивалась в 7655 $.

Применение

Категории

Итак, . Основной потребитель хрома – черная металлургия. Связано это со способностью металла передавать такие свои свойства, как стойкость к коррозии и твердость своим сплавам. Причем влияние он оказывает при добавлении в очень небольших количествах.

Все сплавы хрома и железа разделяют на 2 категории:

  • низколегированные – с долей хрома до 1,6%. В этом случае хром добавляет стали прочности и твердости. Если у обычной стали предел прочности составит 400–580 МПа, то та же марка стали с добавкой 1% вещества продемонстрирует предел равный 1000 МПа;
  • высоколегированные – содержат более 12% хрома. Здесь металл обеспечивает сплаву такую же стойкость к коррозии, какой обладает сам. Все нержавеющие стали называют хромовыми, поскольку именно этот элемент обеспечивает это качество.

Низколегированные стали относятся к конструкционным: из них изготавливают многочисленные детали машин – валы, зубчатые колеса, толкатели и так далее. Сфера использования нержавеющей стали огромна: металлические части турбин, корпуса корабля и подводных лодок, камеры сгорания, крепеж любого рода, трубы, швеллеры, уголки, листовая сталь и так далее.

Кроме того, хром увеличивает стойкость сплава к температуре: при содержании вещества от 30 до 66%, изделия из жаропрочной стали может выполнять свои функции при нагреве до 1200 С. Это материал для клапанов поршневых двигателей, для крепежа, для деталей турбин и прочего.

Если 70% хрома уходит на нужды металлургии, то остальные почти 30% используются для хромирования. Суть процесса сводится к нанесению на поверхность предмета из металла тонкого слоя хрома. Используются для этого самые разные методы, многие доступны домашним мастерам.

Хромирование

Хромирование можно разделить на 2 категории:

  • функциональное – его целью является предупредить коррозию изделия. Толщина слоя здесь больше, так что процесс хромирования занимает больше времени – порой до 24 часов. Кроме того, что хромовый слой предупредит ржавление, он заметно увеличивает износостойкость детали;
  • декоративное – хром создает зеркально-блестящую поверхность. Автолюбители и мотогонщики редко когда отказываются от возможности украсить свою машину хромированными деталями. Слой декоративности покрытия намного тоньше – до 0,0005 мм.

Хромирование активно используется в современном строительстве и при изготовлении мебели. Фурнитура с зеркальным покрытием, аксессуары ванной и кухни, кухонная утварь, детали мебели – изделия с хромовым покрытием на редкость популярны. А так как благодаря современным методом хромирования, покрытие можно создать буквально на любом предмете, появились и несколько нетипичные методы применения. Так, например, хромированную сантехнику к тривиальным решениям отнести нельзя.

Хром – металл с очень необычными свойствами, причем его качества востребованы в промышленности. В большинстве своем интерес представляют его сплавы и соединения, что лишь повышает значение металла для народного хозяйства.

Про снятие хрома с металла расскажет видео ниже:

Пособие-репетитор по химии

Продолжение. Cм. в № 22/2005; 1, 2, 3, 5, 6, 8, 9, 11, 13, 15, 16, 18, 22/2006;
3, 4, 7, 10, 11, 21/2007;
2, 7, 11, 18/2008

ЗАНЯТИЕ 25

10-й класс (первый год обучения)

Хром и его соединения

1. Положение в таблице Д.И.Менделеева, строение атома.

2. Происхождение названия.

3. Физические свойства.

4. Химические свойства.

5. Нахождение в природе.

6. Основные методы получения.

7. Важнейшие соединения хрома:

а) оксид и гидроксид хрома(II);

б) оксид и гидроксид хрома(III), их амфотерные свойства;

в) оксид хрома(VI), хромовая и дихромовая кислота, хроматы и дихроматы.

9. Окислительно-восстановительные свойства соединений хрома.

Хром расположен в побочной подгруппе VI группы таблицы Д.И.Менделеева. При составлении электронной формулы хрома необходимо вспомнить, что в связи с большей устойчивостью конфигурации 3d 5 у атома хрома наблюдается проскок электрона и электронная формула имеет вид: 1s 2 2s 2 p 6 3s 2 p 6 4s 1 3d 5 . В соединениях хром может проявлять степени окисления +2, +3 и +6 (степень окисления +3 является наиболее устойчивой):

Хром получил свое название от греческого слова chroma (цвет, краска) из-за яркой разнообразной окраски его соединений.

Хром – белый блестящий металл, очень твердый, хрупкий, тугоплавкий. Устойчив к коррозии. На воздухе покрывается оксидной пленкой, из-за чего поверхность становится матовой.

Х и м и ч е с к и е с в о й с т в а

При обычных условиях хром – неактивный металл и реагирует только со фтором. Но при нагревании оксидная пленка хрома разрушается, и хром реагирует со многими простыми и сложными веществами (аналогично Al).

4Cr + 3O 2 2Cr 2 O 3 .

Металлы (–).

Неметаллы (+):

2Cr + 3Cl 2 2CrCl 3 ,

2Cr + 3F 2 = 2CrF 3 ,

2Cr + 3SCr 2 S 3 ,

Н 2 О (+/–):*

2Cr + 3H 2 O (пар)Cr 2 O 3 + 3H 2 .

Основные оксиды (–).

Кислотные оксиды (–).

Основания (+/–):

2Cr + 6NaOH + 6H 2 O = 2Na 3 + 3H 2 .

Кислоты-неокислители (+).

Cr + 2HCl = CrCl 2 + H 2 .

Кислоты-окислители (–). Пассивация.

Соли (+/–):

2Cr + 3CuSO 4 = Cr 2 (SO 4) 3 + 3Cu,

Cr + CaCl 2 нет реакции.

В п р и р о д е элемент хром представлен четырьмя изотопами с массовыми числами 50, 52, 53 и 54. В природе хром встречается только в виде соединений, важнейшими из которых являются хромистый железняк, или хромит (FeOжCr 2 O 3) и свинцовая красная руда (PbCrO 4).

Металлический хром получают: 1) из его оксида с помощью алюмотермии:

Cr 2 O 3 + 2Al 2Cr + Al 2 O 3 ,

2) электролизом водных растворов или расплавов его солей:

Из хромистого железняка в промышленности получают сплав железа с хромом – феррохром, широко используемый в металлургии:

FeO Cr 2 O 3 + 4CFe + 2Cr + 4CO.

В а ж н е й ш и е с о е д и н е н и я х р о м а

Хром образует три оксида и соответствующих им гидроксида, характер которых закономерно изменяется с увеличением степени окисления хрома:

Оксид хрома (II) (CrO) – твердое, не растворимое при обычных условиях в воде вещество ярко-красного или коричнево-красного цвета, типичный основной оксид. Оксид хрома(II) легко окисляется на воздухе при нагревании, восстанавливается до чистого хрома.

CrO + 2HCl = CrCl 2 + H 2 O,

4CrO + O 2 2Сr 2 O 3 ,

CrO + H 2 Сr + H 2 O.

Получают оксид хрома(II) прямым окислением хрома:

2Cr + O 2 2СrO.

Гидроксид хрома (II) (Cr(OH) 2) – нерастворимое в воде вещество желтого цвета, слабый электролит, проявляет основные свойства, хорошо растворяется в концентрированных кислотах; легко окисляется в присутствии влаги кислородом воздуха; при прокаливании на воздухе разлагается с образованием оксида хрома(III):

Cr(OH) 2 + 2HCl = CrCl 2 + 2H 2 O,

4Cr(OH) 2 + O 2 2Сr 2 O 3 + 4H 2 O.

Получают гидроксид хрома(II) реакцией обмена между солью хрома(II) и раствором щелочи в отсутствие кислорода:

CrCl 2 + 2NaOH = Cr(OH) 2 + 2NaCl.

Оксид хрома (III) (Cr 2 O 3) проявляет амфотерные свойства. Это тугоплавкий (по твердости сравним с корундом) порошок зеленого цвета, не растворяется в воде. Канцероген! Получают его при разложении дихромата аммония, гидроксида хрома(III), восстановлением дихромата калия или прямым окислением хрома:

(NH 4) 2 Cr 2 O 7 N 2 + Cr 2 O 3 + 4H 2 O,

2Cr(OH) 3 Cr 2 O 3 + 3H 2 O,

2K 2 Cr 2 O 7 + 3С2Cr 2 O 3 + 2K 2 CO 3 + СO 2 ,

4Cr + 3O 2 2Cr 2 O 3 .

При обычных условиях оксид хрома(III) плохо растворяется в кислотах и щелочах; амфотерные свойства он проявляет при сплавлении со щелочами или с карбонатами щелочных металлов (образуя хромиты); при высоких температурах оксид хрома(III) можно восстановить до чистого металла:

Cr 2 O 3 + 2KOH 2KCrO 2 + H 2 O,

Cr 2 O 3 + Na 2 CO 3 2NaCrO 2 + CO 2 ,

Cr 2 O 3 + 6HCl = 2CrCl 3 + 3H 2 O,

2Cr 2 O 3 + 3С4Cr + 3СO 2 .

Гидроксид хрома (III) (Cr(OH) 3) осаждается при действии щелочей на соли трехвалентного хрома (серо-зеленый осадок):

CrCl 3 + 3NaOH (недостаток) = Сr(OH) 3 + 3NaCl.

Он проявляет амфотерные свойства, растворяясь как в кислотах, так и в избытке щелочей; термически неустойчив:

Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O,

Cr(OH) 3 + 3KOH = K 3 ,

Cr(OH) 3 + KOH KCrO 2 + 2H 2 O,

2Cr(OH) 3 Cr 2 O 3 + 3H 2 O.

Оксид хрома (VI) (CrO 3) – кристаллическое вещество темно-красного цвета, ядовит, проявляет кислотные свойства. Хорошо растворим в воде, при растворении этого оксида в воде образуются хромовые кислоты; как кислотный оксид CrO 3 взаимодействует с основными оксидами и со щелочами; термически неустойчив; является сильнейшим окислителем:

CrO 3 + H 2 O =

2CrO 3 + H 2 O =

CrO 3 + K 2 OK 2 CrO 4 ,

CrO 3 + 2NaOH = Na 2 CrO 4 + H 2 O,

4CrO 3 2Cr 2 O 3 + 3O 2 ,

Получают этот оксид взаимодействием сухих хроматов и дихроматов с концентрированной серной кислотой:

K 2 Cr 2 O 7 + H 2 SO 4 (конц.)2CrO 3 + K 2 SO 4 + H 2 O,

K 2 CrO 4 + H 2 SO 4 (конц.)CrO 3 + K 2 SO 4 + H 2 O.

Хромовая и дихромовая кислоты существуют только в водных растворах, но образуют устойчивые соли – хроматы и дихроматы . Хроматы и их растворы имеют желтую окраску, а дихроматы – оранжевую. Хромат-ионы и дихромат-ионы легко переходят друг в друга при изменении среды раствора. В кислой среде хроматы переходят в дихроматы, раствор приобретает оранжевую окраску; в щелочной среде дихроматы переходят в хроматы, раствор становится желтым:

2K 2 CrO 4 + H 2 SO 4)K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O,

K 2 Cr 2 O 7 + 2KOH)2K 2 CrO 4 + H 2 O.

Ион устойчив в щелочной среде, а – в кислой.

О к и с л и т е л ь н о–в о с с т а н о в и т е л ь н ы е с в о й с т в а
с о е д и н е н и й х р о м а

Из всех соединений хрома наиболее устойчивыми являются соединения со степенью окисления хрома +3. Соединения хрома со степенью окисления +2 являются сильными восстановителями и легко окисляются до +3:

4Cr(OH) 2 + O 2 + 2H 2 O = 4Cr(OH) 3 ,

4CrCl 2 + 4HCl + O 2 = 4CrCl 3 + 2H 2 O.

Соединения, содержащие хром в степени окисления +6, являются сильными окислителями, хром при этом восстанавливается от +6 до +3:

K 2 Cr 2 O 7 + 3H 2 S + 4H 2 SO 4 = 3S + Cr 2 (SO 4) 3 + K 2 SO 4 + 7H 2 O.

Для обнаружения спирта в выдыхаемом воздухе используется реакция, основанная на окислительной способности оксида хрома(VI):

4CrO 3 + 3С 2 H 5 OH 2Cr 2 O 3 + 3CH 3 COOH + 3H 2 O.

Раствор дихромата калия в концентрированной серной кислоте называют хромовой смесью и используют для очистки химической посуды.

Тест по теме «Хром и его соединения»

1. Некоторый элемент образует все три типа оксидов (основный, амфотерный и кислотный). Степень окисления элемента в амфотерном оксиде будет:

а) минимальной;

б) максимальной;

в) промежуточной между минимальной и максимальной;

г) может быть любой.

2. При взаимодействии свежеприготовленного осадка гидроксида хрома(III) с избытком раствора щелочи образуется:

а) средняя соль; б) основная соль;

в) двойная соль; г) комплексная соль.

3. Общее число электронов на предвнешнем уровне атома хрома составляет:

а) 12; б) 13; в) 1; г) 2.

4. Какой из оксидов металлов относится к кислотным?

а) Оксид меди(II); б) оксид хрома(VI);

в) оксид хрома(III); г) оксид железа(III).

5. Какая масса дихромата калия (в г) необходима для окисления 11,2 г железа в сернокислом растворе?

а) 58,8; б) 14,7; в) 294; г) 29,4.

6. Какую массу воды (в г) необходимо выпарить из 150 г 10%-го раствора хлорида хрома(III) для получения 30%-го раствора этой соли?

а) 100; б) 20; в) 50; г) 40.

7. Молярная концентрация серной кислоты в растворе равна 11,7 моль/л, а плотность раствора составляет 1,62 г/мл. Массовая доля серной кислоты в этом растворе равна (в %):

а) 35,4; б) 98; в) 70,8; г) 11,7.

8. Число атомов кислорода в 19,4 г хромата калия равно:

а) 0,602 10 23 ; б) 2,408 10 23 ;

в) 2,78 10 23 ; г) 6,02 10 23 .

9. Лакмус покажет красную окраску в водном растворе (возможно несколько правильных ответов):

а) хлорида хрома(III); б) хлорида хрома(II);

в) хлорида калия; г) соляной кислоты.

10. Переход хромата в дихромат происходит в … среде и сопровождается процессом:

а) кислая, процесс восстановления;

б) кислая, не происходит изменения степеней окисления;

в) щелочная, процесс восстановления;

г) щелочная, не происходит изменения степеней окисления.

Ключ к тесту

1 2 3 4 5 6 7 8 9 10
в г б б г а в б а, б, г б

Качественные задачи по идентификации веществ 1. Водный раствор некоторой соли разделили на две части. Одну из них обработали избытком щелочи и нагрели, выделившийся газ изменил цвет красного лакмуса на синий. Другую часть обработали соляной кислотой, выделившийся газ вызвал помутнение известковой воды. Какую соль подвергли анализу? Подтвердите свой ответ уравнениями реакций.

Ответ . Карбонат аммония.

2. При добавлении к водному раствору вещества А (раздельно) аммиака, сульфида натрия и нитрата серебра образуются белые осадки, причем два из них - одинакового состава. Что собой представляет вещество А? Напишите уравнения реакций.

Решение

Вещество А – AlCl 3 .

AlCl 3 + 3NH 4 OH = Al(OH) 3 + 3NH 4 Cl,

2AlCl 3 + 3Na 2 S + 6H 2 O 2Al(OH) 3 + 3H 2 S + 6NaCl,

AlCl 3 + 3AgNO 3 = 3AgCl + Al(NO 3) 3 .

Ответ . Хлорид алюминия.

3. При сгорании в присутствии кислорода бесцветного газа А с резким характерным запахом образуется другой газ В, без цвета и запаха, реагирующий при комнатной температуре с литием с образованием твердого вещества С. Идентифицируйте вещества, напишите уравнения реакций.

Решение

Вещество А – NH 3 ,

вещество В – N 2 ,

вещество С – Li 3 N.

4NH 3 + 3O 2 2N 2 + 6H 2 O,

N 2 + 6Li = 2Li 3 N.

Ответ . NH 3 , N 2 , Li 3 N.

4. Бесцветный газ А с характерным резким запахом реагирует с другим бесцветным газом В, имеющим запах тухлых яиц. В результате реакции образуется простое С и сложное вещество. Вещество С взаимодействует с медью с образованием соли черного цвета. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . SO 2 , H 2 S, S.

5. Бесцветный газ А с резким характерным запахом, легче воздуха, реагирует с сильной кислотой В, при этом образуется соль С, водный раствор которой не образует осадков ни с хлоридом бария, ни с нитратом серебра. Идентифицируйте вещества, приведите уравнения реакций (один из возможных вариантов).

Ответ . NH 3 , HNO 3 , NH 4 NO 3 .

6. Простое вещество А, образованное атомами второго по распространенности элемента земной коры, реагирует при нагревании с оксидом железа(II), в результате чего образуется соединение В, нерастворимое в водных растворах щелочей и кислот (кроме плавиковой). Вещество В при сплавлении с негашеной известью образует нерастворимую соль С. Идентифицируйте вещества, приведите уравнения реакций (один из возможных вариантов).

Ответ . Si, SiO 2 , CaSiO 3 .

7. Нерастворимое в воде соединение А бурого цвета при нагревании разлагается с образованием двух оксидов, один из которых – вода. Другой оксид В восстанавливается углем с образованием металла С, вторым по распространенности в природе металлом. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Fe(OH) 3 , Fe 2 O 3 , Fe.

8. Вещество А, входящее в состав одного из самых распространенных минералов, при обработке соляной кислотой образует газ В. При взаимодействии вещества В при нагревании с простым веществом С образуется только одно соединение – горючий газ без цвета и запаха. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . CaCO 3 , CO 2 , C.

9. Легкий металл А, реагирующий с разбавленной серной кислотой, но не реагирующий на холоде с концентрированной серной кислотой, взаимодействует с раствором гидроксида натрия, при этом образуются газ и соль В. При добавлении к веществу В соляной кислоты образуется соль С. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . Al, NaAlO 2 , NaCl.

10. Вещество А представляет собой мягкий, хорошо режущийся ножом серебристо-белый металл, легче воды. При взаимодействии вещества А с простым веществом В образуется соединение С, растворимое в воде с образованием щелочного раствора. При обработке вещества С соляной кислотой выделяется газ с неприятным запахом и образуется соль, окрашивающая пламя горелки в фиолетовый цвет. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . K, S, K 2 S.

11. Бесцветный газ А с резким характерным запахом окисляется кислородом в присутствии катализатора в соединение В, представляющее собой летучую жидкость. Вещество В, вступая в реакцию с негашеной известью, образует соль С. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . SO 2 , SO 3 , CaSO 4 .

12. Простое вещество А, жидкое при комнатной температуре, реагирует с серебристо-белым легким металлом В, образуя соль С, которая при обработке раствором щелочи дает белый осадок, растворяющийся в избытке щелочи. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . Br 2 , Al, AlBr 3 .

13. Твердое простое вещество А желтого цвета реагирует с серебристо-белым легким металлом В, в результате чего образуется соль С, полностью гидролизующаяся в водном растворе с образованием белого осадка и ядовитого газа с неприятным запахом. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . S, Al, Al 2 S 3 .

14. Простое неустойчивое газообразное вещество А превращается в другое простое вещество В, в атмосфере которого сгорает металл С; продуктом этой реакции является оксид, в котором металл находится в двух степенях окисления. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . O 3 , O 2 , Fe.

15. Кристаллическое вещество темно-фиолетового цвета А при нагревании разлагается с образованием простого газообразного вещества В, в атмосфере которого сгорает простое вещество С, образуя бесцветный газ без запаха, входящий в небольших количествах в состав воздуха. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . KMnO 4 , O 2 , C.

16. Простое вещество А, являющееся полупроводником, реагируя с простым газообразным веществом В, образует соединение С, не растворяющееся в воде. При сплавлении со щелочами вещество С образует соединения, называемые растворимыми стеклами. Идентифицируйте вещества, приведите уравнения реакций (один из возможных вариантов).

Ответ . Si, O 2 , SiO 2 .

17. Ядовитый бесцветный газ А с неприятным запахом разлагается при нагревании на простые вещества, одно из которых В представляет собой твердое вещество желтого цвета. При сгорании вещества В образуется бесцветный газ С с неприятным запахом, обесцвечивающий многие органические краски. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . H 2 S, S, SO 2 .

18. Летучее водородное соединение А сгорает в воздухе, образуя вещество В, растворимое в плавиковой кислоте. При сплавлении вещества В с оксидом натрия образуется растворимая в воде соль С. Идентифицируйте вещества, приведите уравнения реакций.

Ответ . SiH 4 , SiO 2 , Na 2 SiO 3 .

19. Труднорастворимое в воде соединение А белого цвета в результате прокаливания при высокой температуре с углем и песком в отсутствие кислорода образует простое вещество В, существующее в нескольких аллотропных модификациях. При сгорании этого вещества в воздухе образуется соединение С, растворяющееся в воде с образованием кислоты, способной образовывать три ряда солей. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Ca 3 (PO 4) 2 , P, P 2 O 5 .

* Знак +/– означает, что данная реакция протекает не со всеми реагентами или в специфических условиях.

Продолжение следует

Cr 2+ . Концентрация заряда двухвалентного катиона хрома соответствует концентрации заряда катиона магния и двухвалентного катиона железа, поэтому целый ряд свойств, особенно, кислотно-основное поведение этих катионов близко. При этом, как уже было сказано, Cr 2+ - сильный восстановитель, поэтому в растворе идут следующие реакции: 2CrCl 2 + 2HCl = 2CrCl 3 + H 2 4CrCl 2 + 4HCl + O 2 = 4CrCl 3 + 2H 2 O. Достаточно медленно, но происходит даже окисление водой: 2CrSO 4 + 2H 2 O = 2Cr(OH)SO 4 + H 2 . Окисление двухвалентного хрома происходит даже легче, чем окисление двухвалентного железа, соли также подвергаются гидролизу по катиону в умеренной степени (т.е., доминирующей является первая ступень).

CrO – основной оксид, черного цвета, пирофорен. При 700 о С диспропорционирует: 3CrO = Cr 2 O 3 + Cr. Он может быть получен при термическом разложении соответствующего гидроксида в отсутствие кислорода.

Cr(OH) 2 – нерастворимое основание желтого цвета. Реагирует с кислотами, при этом кислоты-окислители одновременно с кислотно-основным взаимодействием окисляют двухвалентный хром, в определенных условиях это происходит и с кислотами-неокислителями (окислитель – H +). При получении по обменной реакции гидроксид хрома (II) быстро зеленеет из-за окисления:

4Cr(OH) 2 + O 2 = 4CrO(OH) + 2H 2 O.

Окислением сопровождается и разложение гидроксида хрома (II) в присутствии кислорода: 4Cr(OH) 2 = 2Cr 2 O 3 + 4H 2 O.

Cr 3+ . Соединения хрома (III) по химическим свойствам похожи на соединения алюминия и железа (III). Оксид и гидроксид амфотерны. Соли слабых нестойких и нерастворимых кислот(H 2 CO 3 , H 2 SO 3 , H 2 S, H 2 SiO 3) подвергаются необратимому гидролизу:

2CrCl 3 + 3K 2 S + 6H 2 O = 2Cr(OH) 3 ↓ + 3H 2 S + 6KCl ; Cr 2 S 3 + 6H 2 O = 2Cr(OH) 3 ↓ + 3H 2 S.

Но катион хрома (III) – не очень сильный окислитель, поэтому сульфид хрома (III) существует и может быть получен в безводных условиях, правда, не из простых веществ, так как разлагается при нагревании, а по реакции: 2CrCl 3 (кр) + 2H 2 S (газ) = Сr 2 S 3 (кр) + 6HCl. Окислительных свойств трёхвалентного хрома недостаточно для того, чтобы растворы его солей взаимодействовали с медью, но с цинком такая реакция проходит: 2CrCl 3 + Zn = 2CrCl 2 + ZnCl 2.

Cr 2 O 3 – амфотерный оксид зеленого цвета, имеет очень прочную кристаллическую решетку, поэтому химическую активность проявляет только в аморфном состоянии. Реагирует, в основном, при сплавлении с кислотными и основными оксидами, с кислотами и щелочами, а также с соединениями, имеющими кислотные или основные функции:

Cr 2 O 3 + 3K 2 S 2 O 7 = Cr 2 (SO 4) 3 + 3K 2 SO 4 ; Cr 2 O 3 + K 2 CO 3 = 2KCrO 2 + CO 2 .

Cr(OH) 3 (CrO(OH), Cr 2 O 3 *nH­­ 2 O) – амфотерный гидроксид серо-синего цвета. Растворяется и в кислотах, и в щелочах. При растворении в щелочах образуются гидроксокомлексы, в которых катион хрома имеет координационное число 4 или 6:

Cr(OH) 3 + NaOH = Na; Cr(OH) 3 + 3NaOH = Na 3 .

Гидроксокомплексы легко разлагаются кислотами, при этом с сильными и слабыми кислотами процессы различны:

Na + 4HCl = NaCl +CrCl 3 + 4H 2 O ; Na + CO 2 = Cr(OH) 3 ↓ + NaHCO 3.

Соединения Cr(III) являются не только окислителями, но и восстановителями по отношению к превращению в соединения Cr(VI). Особенно легко реакция проходит в щелочной среде:

2Na 3 + 3Cl 2 + 4NaOH = 2Na 2 CrO 4 + 6NaCl + 8H 2 O E 0 =­ - 0,72­ В.

В кислой среде: 2Cr 3+ → Cr 2 O 7 2- E 0 =­ +1,38 В.

Cr +6 . Все соединения Cr(VI) – сильные окислители. Кислотно-основное поведение этих соединений похоже на поведение соединений серы в той же степени окисления. Такое сходство свойств соединений элементов главных и побочных подгрупп в максимальной положительной степени окисления характерно для большинства групп периодической системы.

CrO 3 - соединение тёмно-красного цвета, типичный кислотный оксид. При температуре плавления разлагается: 4CrO 3 = 2Cr 2 O 3 + 3O 2 .

Пример окислительного действия: CrO 3 + NH 3 = Cr 2 O 3 + N 2 + H 2 O (При нагревании).

Оксид хрома(VI) легко растворяется в воде, присоединяя её и превращаясь в гидроксид:

H 2 CrO 4 - хромовая кислота, является сильной двухосновной кислотой. В свободном виде не выделяется, т.к. при концентрации выше 75% идет реакция конденсации с образованием двухромовой кислоты: 2H 2 CrO 4 (жёлт.) = H 2 Cr 2 O 7 (оранж.) + H 2 O.

Дальнейшее концентрирование ведёт к образованию трихромовой (H 2 Cr 3 O 10) и даже тетрахромовой (H 2 Cr 4 O 13) кислот.

Димеризация хромат-аниона происходит также при подкислении. В результате соли хромовой кислоты при pH > 6 существуют как хроматы(K 2 CrO 4) жёлтого цвета, а при pH < 6 как бихроматы(K 2 Cr 2 O 7) оранжевого цвета. Большинство бихроматов растворимы, а растворимость хроматов чётко соответствует растворимости сульфатов соответствующих металлов. В растворах возможно взаимопревращения соответствующих солей:

2K 2 CrO 4 + H 2 SO 4 = K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O; K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O.

Взаимодействие бихромата калия с концентрированной серной кислотой ведёт к образованию хромового ангидрида, нерастворимого в ней:

K 2 Cr 2 O 7 (крист.) + + H 2 SO 4 (конц.) = 2CrO 3 ↓ + K 2 SO 4 + H 2 O;

Бихромат аммония при нагревании претерпевает внутримолекулярную окислительно-восстановительную реакцию: (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

ГАЛОГЕНЫ («рождающие соли»)

Галогенами называются элементы главной подгруппы VII группы периодической системы. Это фтор, хлор, бром, иод, астат. Строение внешнего электронного слоя их атомов: ns 2 np 5 . Т.о., на внешнем электронном уровне находится 7 электронов, и до устойчивой оболочки благородного газа им не хватает всего одного электрона. Являясь предпоследними элементами в периоде, галогены имеют наименьший в периоде радиус. Все это приводит к тому, что галогены проявляют свойства неметаллов, имеют большую электроотрицательность и высокий потенциал ионизации. Галогены являются сильными окислителями, они способны принимать электрон, превращаясь в анион с зарядом "1-" или проявлять степень окисления «-1» при ковалентном связывании с менее электроотрицательными элементами. В то же время, при движении по группе сверху вниз радиус атома увеличивается и окислительная способность галогенов уменьшается. Если фтор является самым сильным окислителем, то иод при взаимодействии с некоторыми сложными веществами, а также с кислородом и другими галогенами проявляет восстановительные свойства.

Атом фтора отличается от других членов группы. Во-первых, он проявляет только отрицательную степень окисления, так как является самым электроотрицательным элементом, а во-вторых, как любой элемент II периода, он имеет только 4 атомных орбитали на внешнем электронном уровне, три из которых заняты неподеленными электронными парами, на четвертой находится неспаренный электрон, который в большинстве случаев и является единственным валентным электроном. В атомах остальных элементов на внешнем уровне имеется незаполненный d-электронный подуровень, куда может переходить возбужденный электрон. Каждая неподеленная пара при распаривании дает два электрона, поэтому основные степени окисления хлора, брома и иода, кроме «-1», это «+1», «+3», «+5», «+7». Менее устойчивыми, но принципиально достижимыми являются степени окисления «+2», «+4» и «+6».

Как простые вещества все галогены представляют собой двухатомные молекулы с одинарной связью между атомами. Энергии диссоциации связей в ряду молекул F 2 , Cl 2 , Br 2 , J 2 следующие: 151 кДж/моль, 239 кДж/моль, 192 кДж/моль, 149 кДж/моль. Монотонное уменьшение энергии связи при переходе от хлора к иоду легко объясняется увеличением длины связи из-за роста радиуса атома. Аномально низкая энергия связи в молекуле фтора имеет два объяснения. Первое касается самой молекулы фтора. Как уже говорилось, фтор имеет очень маленький радиус атома и целых семь электронов на внешнем уровне, поэтому при сближении атомов при образовании молекулы возникает межэлектронное отталкивание, в результате чего перекрывание орбиталей происходит не полностью, и порядок связи в молекуле фтора несколько меньше единицы. Согласно второму объяснению, в молекулах остальных галогенов существует дополнительное донорно-акцепторное перекрывание неподеленной электронной пары одного атома и свободной d-орбитали другого атома, по два таких противоположных взаимодействия на молекулу. Т.о., связь в молекулах хлора, брома и иода определяется как почти тройная с точки зрения наличия взаимодействий. Но донорно-акцепторные перекрывания происходят лишь частично, и связь имеет порядок (для молекулы хлора) 1,12.

Физические свойства: При обычных условиях фтор – это трудно сжижаемый газ (температура кипения которого -187 0 С) светло-желтого цвета, хлор – легко сжижаемый (температура кипения равна –34,2 0 С) газ желто-зеленого цвета, бром – бурая легко испаряющаяся жидкость, иод – твердое вещество серого цвета с металлическим блеском. В твердом состоянии все галогены образуют молекулярную кристаллическую решетку, характеризующуюся слабыми межмолекулярными взаимодействиями. В связи с чем иод имеет склонность к возгонке – при нагревании при атмосферном давлении переходит в газообразное состояние (образует фиолетовые пары), минуя жидкое. При движении по группе сверху вниз температуры плавления и кипения увеличиваются как за счет увеличения молекулярной массы веществ, так и за счет усиления сил Ван-дер-Ваальса, действующих между молекулами. Величина этих сил тем больше, чем больше поляризуемость молекулы, которая, в свою очередь, возрастает с увеличением радиуса атома.

Все галогены плохо растворяются в воде, но хорошо – в неполярных органических растворителях, например, в четыреххлористом углероде. Плохая растворимость в воде связана с тем, что при образовании полости для растворения молекулы галогена вода теряет достаточно прочные водородные связи, взамен которых между ее полярной молекулой и неполярной молекулой галогена никаких сильных взаимодействий не возникает. Растворение галогенов в неполярных растворителях соответствует ситуации: «подобное растворяется в подобном», когда характер рвущихся и образующихся связей одинаковый.

В 1766 году профессор химии и заведующий Химической лабораторией Петербургской АН И.Г. Леман описал новый минерал, найденный на Урале на Березовском руднике, который получил название "сибирский красный свинец", PbCrO 4 . Современное название - крокоит. В 1797 французский химик Л. Н. Воклен выделил из него новый тугоплавкий металл.
Название элемент получил от греч. χρῶμα - цвет, краска - из-за разнообразия окраски своих соединений.

Нахождение в природе и получение:

Наиболее распространённым минералом хрома является хромистый железняк FeCr 2 O 4 (хромит), богатые месторождения которого имеются на Урале и в Казахстане, вторым по значимости минералом является крокоит PbCrO 4 . Массовая доля хрома в земной коре составляет 0,03%. Природный хром состоит из смеси пяти изотопов c массовыми числами 50, 52, 53, 54 и 56; искусственно получены и другие, радиоактивные, изотопы.
Основные количества хрома получают и используют в виде сплава с железом, феррохрома, восстанавливая хромит коксом: FeCr 2 O 4 + 4C = Fe + 2Cr + 4CO
Чистый хром получают, восстанавливая алюминием его оксид: Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3
или электролизом водных растворов соединений хрома.

Физические свойства:

Хром - серовато-белый блестящий металл, по внешнему виду похож на сталь, один из самых твердых металлов, r = 7,19г/см 3 , Tпл=2130K, Tкип=2945K. Хром обладает всеми характерными для металлов свойствами - хорошо проводит тепло, электрический ток, имеет присущий большинству металлов блеск.

Химические свойства:

Хром устойчив на воздухе за счёт пассивирования - образования защитной оксидной пленки. По этой же причине не реагирует с концентрированной серной и азотной кислотами. При 2000°C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 .
При нагревании реагирует со многими неметаллами, часто образуя соединения нестехиометрического состава карбиды, бориды, силициды, нитриды и др.
Хром образует многочисленные соединения в различных степенях окисления, в основном +2, +3, +6.

Важнейшие соединения:

Степень окисления +2 - основный оксид CrO (чёрный), гидроксид Cr(OH) 2 (желтый). Соли хрома(II) (растворы голубого цвета) получаются при восстановлении солей хрома(III) цинком в кислой среде. Очень сильные восстановители, медленно окисляются водой с выделением водорода.

Степень окисления +3 - наиболее устойчивая степень окисления хрома, ей соответствуют: амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 (оба - серо-зелёного цвета), соли хрома(III) - серо-зеленого или фиолетового цвета, хромиты MCrO2, которые получаются при сплавлении оксида хрома со щелочами, тетра- и гексагидроксохроматы(III) получаемые при растворении гидроксида хрома(III) в растворах щелочей (зеленого цвета), многочисленные комплексные соединения хрома.

Степень окисления +6 - вторая характерная степень окисления хрома, ей отвечают соответствует кислотный оксид хрома(VI) CrO 3 (красные кристаллы, растворяется в воде, образуя хромовые кислоты), хромовая H 2 CrO 4 , дихромовая H 2 Cr 2 O 7 и полихромовые кислоты, соответствующие соли: желтые хроматы и оранжевые дихроматы. Соединения хрома(VI) сильные окислители, особенно в кислой среде, восстанавливаются до соединений хрома(III)
В водном растворе хроматы переходят в дихроматы при изменении кислотности среды:
2CrO 4 2- + 2H + Cr 2 O 7 2- + H 2 O, что сопровождается изменением окраски.

Применение

Хром, в виде феррохрома используется при производстве легированных видов стали (в частности, нержавеющих), и других сплавов. Сплавы хрома: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности, сплав с никелем (нихром) - для производства нагревательных элементов. Большие количества хрома используются в качестве износоустойчивых и красивых гальванических покрытий (хромирование).

Биологическая роль и физиологическое действие

Хром - один из биогенных элементов, постоянно входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хрома в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови.

В чистом виде хром довольно токсичен, металлическая пыль хрома раздражает ткани лёгких. Соединения хрома(III) вызывают дерматиты. Соединения хрома(VI) приводят к разным заболеваниям человека, в том числе и онкологическим. ПДК хрома(VI) в атмосферном воздухе 0,0015 мг/м 3

Кононова А.С., Наков Д.Д., ТюмГУ, 501(2) группа, 2013 г.

Источники:
Хром (элемент) // Википедия. URL: http://ru.wikipedia.org/wiki/Хром (дата обращения: 6.01.2014).
Популярная библиотека химических элементов: Хром. // URL:

ОПРЕДЕЛЕНИЕ

Хром - двадцать четвертый элемент Периодической таблицы. Обозначение - Cr от латинского «chromium». Расположен в четвертом периоде, VIB группе. Относится к металлам. Заряд ядра равен 24.

Хром содержится в земной коре в количестве 0,02% (масс.). В природе он встречается главным образом в виде хромистого железняка FeO×Cr 2 O 3 .

Хром представляет собой твердый блестящий металл (рис. 1), плавящийся при 1890 o С; плотность его 7,19 г/см 3 . При комнатной температуре хром стоек и к воде, и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.

Рис. 1. Хром. Внешний вид.

Атомная и молекулярная масса хрома

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии хром существует в виде одноатомных молекул Cr, значения его атомной и молекулярной масс совпадают. Они равны 51,9962.

Изотопы хрома

Известно, что в природе хром может находиться в виде четырех стабильных изотопов 50 Cr, 52 Cr, 53 Cr и 54 Cr. Их массовые числа равны 50, 52, 53 и 54 соответственно. Ядро атома изотопа хрома 50 Cr содержит двадцать четыре протона и двадцать шесть нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы хрома с массовыми числами от 42-х до 67-ми, среди которых наиболее стабильным является 59 Cr с периодом полураспада равным 42,3 минуты, а также один ядерный изотоп.

Ионы хрома

На внешнем энергетическом уровне атома хрома имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 .

В результате химического взаимодействия хром отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Cr 0 -2e → Cr 2+ ;

Cr 0 -3e → Cr 3+ ;

Cr 0 -6e → Cr 6+ .

Молекула и атом хрома

В свободном состоянии хром существует в виде одноатомных молекул Cr. Приведем некоторые свойства, характеризующие атом и молекулу хрома:

Сплавы хрома

Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали обладают повышенной твердостью. Хром входит в состав нержавеющих кислотоупорных, жаропрочных сталей.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Оксид хрома (VI) массой 2 г растворили в воде массой 500 г. Рассчитайте массовую долю хромовой кислоты H 2 CrO 4 в полученном растворе.
Решение Запишем уравнение реакции получения хромовой кислоты из оксида хрома (VI):

CrO 3 + H 2 O = H 2 CrO 4 .

Найдем массу раствора:

m solution = m(CrO 3) + m (H 2 O) = 2 + 500 = 502 г.

n (CrO 3) = m (CrO 3) / M (CrO 3);

n (CrO 3) = 2 / 100 = 0,02 моль.

Согласно уравнению реакции n(CrO 3) :n(H 2 CrO 4) = 1:1, значит,

n(CrO 3) = n(H 2 CrO 4) = 0,02 моль.

Тогда масса хромовой кислоты будет равна (молярная масса - 118 г/моль):

m (H 2 CrO 4) = n (H 2 CrO 4) × M (H 2 CrO 4);

m (H 2 CrO 4) = 0,02 × 118 = 2,36 г.

Массовая доля хромовой кислоты в растворе составляет:

ω = m solute / m solution × 100%;

ω (H 2 CrO 4)=m solute (H 2 CrO 4)/ m solution × 100%;

ω (H 2 CrO 4)= 2,36 / 502 × 100% = 0,47 %.

Ответ Массовая доля хромовой кислоты равна 0,47 %.