Тепловой шок heat shock - тепловой шок.

Стрессовое состояние организма после воздействия повышенной температуры, в частности, Т.ш. применяется для индуцирования полиплоидии <induced polyploidy > в основном у размножающихся в воде животных (рыбы, моллюски): температуру воды повышают до 29-33 o С на 2-20 мин. (нормальная температура инкубации обычно 15-20 o С) через 3-10 мин. (индукция триплоидии) либо через 20-40 мин. (индукция тетраплоидии) после оплодотворения; также в состоянии Т.ш. анализируют активность специфических белков теплового шока <heat-shock proteins >, пуфовой активности <puffing > у дрозофил (в этом случае Т.ш. при 41-43 o С).

(Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)


Смотреть что такое "тепловой шок" в других словарях:

    Тепловой шок - * цеплавы шок * heat shock стрессовое состояние организма вследствие воздействия повышенной температуры. Т. ш. применяется: а) для индуцирования полиплоидии (см.) у рыб, моллюсков инкубация особей после оплодотворения при tо = 29 33 °С (вместо… … Генетика. Энциклопедический словарь

    тепловой шок - Стрессовое состояние организма после воздействия повышенной температуры, в частности, Т.ш. применяется для индуцирования полиплоидии в основном у размножающихся в воде животных (рыбы, моллюски): температуру воды повышают до 29 33 oС на 2 20 мин.… … Справочник технического переводчика

    Шок тепловой - Син.: Истощение тепловое. Возникает при перегревании вследствие недостаточной ответной реакции сосудов сердца на экстремально высокую температуру, особенно часто развивается у пожилых людей, принимающих мочегонные препараты. Проявляется слабостью … Энциклопедический словарь по психологии и педагогике

    ПЕРЕГРЕВАНИЕ И ТЕПЛОВОЙ УДАР - мед. Перегревание (тепловой обморок, тепловая прострация, тепловой коллапс) и тепловой удар (гиперпирексия, солнечный удар, перегревание организма) патологические реакции организма на высокую температуру окружающей среды, связанные с… … Справочник по болезням

    - (англ. HSP, Heat shock proteins) это класс функционально сходных белков, экспрессия которых усиливается при повышении температуры или при других стрессирующих клетку условиях. Повышение экспрессии генов, кодирующих белки теплового… … Википедия

    Тетрамер, состоящий из четырёх идентичных молекул белка p53. Они связаны между собой доменами, отвечающими за олигомеризацию (см. в тексте). p53 (белок p53) это транскрипционный фактор, регулирующий клеточный цикл. В не мутировавшем состоянии… … Википедия

В 1962 году в Италии молодой генетик Ферруччио Ритосса обнаружил набухание (puffing) некоторых участков хромосом дрозофилы при случайном повышении температуры в термостате. Это оказалось проявлением активации генов и получило название "ответа на тепловой шок" (heat shock response) (ссылка ), а индуцируемые белки были названы белками теплового шока, БТШ (heat shock proteins , HSP ). В дальнейшем этот класс белков был найден во всех клетках всех живых организмов - от бактерий до человека. Известно, что подобный ответ проявляется, кроме тепловых, при различных биологических (инфекция, воспаление), физических (радиация, гипоксия), химических (спирты, металлы) и других стрессорных воздействиях . Поэтому белки теплового шока называют также белками стресса . Повышенная экспрессия белков HSP защищает клетку, стабилизируя денатурированные или неправильно свернутые пептиды. Накапливаясь при различных вредных воздействиях, белки теплового шока помогают клетке поддерживать гомеостаз в условиях стресса (см). Белки HSP реагируют не только на внешние стрессовые ситуации, они проявляются при многих болезнях, как, например, нейродегенерация, метаболические нарушения, ишемические повреждения и рак, что определяет повышенный интерес к этим белкам и поиску терапевтичеких инструментов, регулирующих их реакции (2006 , 2007 , 2007а ).
Белки теплового шока служат биологическими маркерами неблагоприятного состояния организма .


Ответ клетки на стресс регулируется, прежде всего, на уровне транскрипции (ДНК в РНК) с помощью факторов теплового шока (heat shock factor, HSF ) (). Семейство HSF содержит 4 вида, из которых у млекопитающих и человека экспрессируются HSF1, HSF2 и HSF4, причем HSF1 является универсальным стресс-реагирующим активатором, в то время как HSF2 больше связан с процессами дифференцировки. В отсутствие стресса эти факторы находятся в ядре и цитоплазме в мономерной форме и не способны связываться с ДНК. В ответ на стресс HSF образуют тримеры (возможны гомотримеры HSF1 либо гетеротримеры HSF1-HSF2) (см .) и перемещаются в ядро, где они связываются с элементами теплового шока (HSE ) - специфическими последовательностями ДНК в промоторах генов теплового шока.


Последующее фосфорилирование тримеров HSF сопровождается активацией транскрипции генов теплового шока и повышением уровня HSP, приводя к образованию комплексов HSF-HSP . Когда стресс прекращается, тримерные формы HSF отделяются от ДНК, превращаясь опять в неактивные мономеры, а клетка возвращается к нормальному белковому синтезу (ссылка).
Предполагается, что белки теплового шока сами могут регулировать экспрессию своих генов через "петлю авторегуляции". Согласно этой гипотезе, увеличение концентрации неправильно свернутых белков, возникшее при стрессе, приводит к связыванию специфических HSP и активации HSF.

Белки теплового шока как молекулярные шапероны


Дальнейшее изучение класса HSP показало, что эти белки не только индуцируются при стрессе, но многие из них функционируют конститутивно как молекулярные шапероны , участвуя в стабилизации и перемещении незрелых пептидов при нормальном росте. Например, белки Hsp70, Hsp90 присутствуют в высоких концентрациях в не-стрессовых клетках, составляя 1-1,5% общего клеточного белка, что указывает на постоянную потребность клетки в поддержании конформационного гомеостаза ее белков . Эти белки находятся в цитозоле, митохондриях, эндоплазматическом ретикулуме и ядре. Молекулярные массы HSP лежат в пределах 15-110 кДа. Наиболее изученными у млекопитающих являются белки HSP 60, 70, 90 и 110 кДа, которые играют важную роль в фундаментальных внутриклеточных процессах - от антиапоптозного действия до разворачивания и внутриклеточного перемещения белков .
Функции БТШ как шаперонов можно свести к следующим:
1. Свертывание незрелых полипептидных цепей;
2. Облегчение перемещения белков через разные клеточные компартменты;
3. Модуляция белковой активности за счет стабилизации и/или созревания до функционально компетентной конформации;
4. Поддержка образования/расщепления мультибелковых комплексов ;
5. Исправление неправильно свернутых белков;
6. Защита белков от агрегации ;
7. Направление полностью поврежденных белков к расщеплению ;
8. Организация агрегатов из разрушенных белков;
9. Солюбилизация белковых агрегатов для дальнейшей деградации.


Ко-шапероны

Активность белков теплового шока регулируется другими белками - ко-шаперонами , которые способствуют выполнению основных функций HSP. Хотя многие ко-шапероны являются растворимыми цитозольными белками, некоторые из них локализованы во внутриклеточных мембранах или элементах цитоскелета. Эти специализированные ко-шапероны включают ауксилин, Tom70, UNC-45, гомологи Bag-1. Ко-шапероны могут участвовать в АТФ-зависимой активности HSP70 и HSP90, включая такие функции, как секреция, белковый транспорт и образование/расщепление белковых комплексов (ссылка).
Ко-шапероны Hip, Hop, Hup, CHIP модулируют нуклеотидный обмен и связывание субстратов белками HSP70, координируя свертывание новосинтезированных белков, исправляют неправильное свертывание поврежденных и денатурированных белков, направляют перенос белков через клеточные мембраны, ингибируют агрегацию белков и осуществляют деградацию по протеасомальному пути () .


Функции некоторых ко-шаперонов

Белки HSP70 вместе с ко-шарепонами осуществляют, по меньшей мере, 2 альтернативных вида активности : предотвращают агрегацию не-нативных белков при связывании с гидрофобными участками молекул субстратов, защищая их от межмолекулярных взаимодействий ("охранная", "holder" активность ), а также способствуют свертыванию не-нативных интермедиатов до нативного состояния ("свертывающая", "folder" активность ).

HSP и АТФ-азный цикл


Белки теплового шока у млекопитающих представлены 6 семействами в зависимости от молекулярной массы: Hsp100, Hsp90, Hsp70, Hsp60, Hsp40 и малые Hsps (15 to 30 kDa), включающие Hsp27. Высокомолекулярные HSP являются АТФ-зависимыми, а активность малых HSP не зависит от АТФ.
Генетические и биохимические данные показали, что гидролиз АТФ является существенным элементом активности шаперонов HSP70. Белки этого семейства связываются с промежуточными пептидами за счет циклов связывания и гидролиза АТФ, а последующий обмен АДФ/АТФ сопровождается освобождением пептидов. Молекулы HSP70 содержат две консервативных области - N-концевую АТФ-связывающую (45 кДа) и С-концевую (15 кДа), связывающую гидрофобные пептиды . Между ними находится более вариабельная область альфа-спиральной "крышки". АТФ-связанный HSP70 ("крышка" открыта) свободно взаимодействует с незрелыми или неправильно свернутыми пептидами, вызывая конформационные изменения, которые приводят к активации АТФ-азы и усиливают ассоциацию с ко-шапероном HSP40, что способствует переходу к АДФ-связанной ("крышка" закрыта) форме. Для эффективного сопряжения гидролиза АТФ со связыванием и последующим освобождением пептидных субстратов существенны ко-шапероны семейства JDP (J-domain proteins) ( ; ).

Белки теплового шока при ишемии


Цитопротекторные свойства белков класса HSP70 были показаны на различных моделях ишемических нарушений in vitro и in vivo ( , , , , , ). Вначале эта защита объяснялась действием HSP как шаперонов (поддержанием правильного свертывания белков и предотвращением их агрегации), но затем выяснилось, что HSP70 могут напрямую реагировать с путями клеточной смерти - апоптозом и некрозом .
Как видно из рисунка, церебральная ишемия индуцирует апоптоз разными способами, а HSP70 уменьшает действие их всех. "Внутренний" путь апоптоза состоит в выделении про-апоптозных митохондриальных веществ, открытии митохондриальной поры и активации каспаз (см .). Другой ("внешний") путь связан с активацией рецепторов плазматической мембраны (Fas и TNFR), индуцирующих апоптоз через каспазу-8, используя фактор TRAF. Кроме того, известны механизмы каспаз-независимого апоптоза (см .).
БелкиHSP70 могут ингибировать освобождение цитохрома с (cyt c) из митохондрий и транслокацию индуцирующего апоптоз фактора AIF в ядро, уменьшая ишемическое повреждение мозга (см .), а также ингибировать освобождение проапоптозного белка Smac/DIABLO из митохондрий миоцитов .
Экспрессия HSP72 в астроцитах приводит к снижению образования реактивных видов кислорода (ROS) и поддержанию мембранного потенциала митохондрий , а также уровня глутатиона и увеличению активности супероксиддисмутазы при ишемических нарушениях в кардиоцитах.
Повышенная экспрессия HSP72 способна уменьшать апоптоз прямо через увеличение уровня Bcl-2 и с помощью ингибирования транслокации проапоптозного фактора Bax.
Показано, что белки класса HSP70 ингибируют дефосфорилирование киназы JNK (c-Jun N-terminal kinase), которая играет существенную роль в нейрональном апоптозе и является одной из мишеней для терапии инсультов.
Кроме того, белки Hsp взаимодействуют с топоизомеразой 1 (регулятором апоптоза) и являются эффекторами важной антиапоптозной киназы Akt/PKB (см). Значительная активация белками теплового шока глутатион-пероксидазы и глутатионредуктазы является существенным элементом в механизме цитопротекторного действия HSP при ишемии ().

Противовоспалительный эффект белков теплового шока


Белки теплового шока оказывают выраженное противовоспалительное действие, предотвращая ответы клеток на такие воспалительные цитокины , как TNF и IL-1 .
Известно, что при воспалении образуются ROS за счет активации индуцируемой формы NO-синтазы (iNOS) и NADPH-оксидазы, причем iNOS возникает в ответ на выделение цитокинов. Синтезируемая iNOS закись азота (NO) реагирует с супероксидом, образуя высокотоксичный окислитель пероксинитрит: -O2− + -NO → ONOO−
а HSP72 ингибирует экспрессиюiNOS, уменьшая активацию NFkappaB (ссылка). Кроме того, белки теплового шока снижают активность NADPH-оксидазы в нейтрофилах и активируют супероксиддисмутазу в фагоцитах , а также регулируют активность матричных металлопротеиназ в астроцитах .
Значительная часть внутриклеточных эффектов белков HSP при воспалении связана с регуляцией ими пути ядерного фактора NFκB, так как факторы транскрипции этого семейства являются ключевыми участниками запуска воспалительной реакции. Транслокация димеров, составляющих NFkB, в ядро, где они индуцируют экспрессию многих воспалительных генов, ингибируется белками теплового шока за счет прямого взаимодействия либо через влияние на сигнальные пути NFkB.
Показано также, что Hsp72 взаимодействует с киназным комплексом IKK, необходимым для освобождения NFkB и перехода его в ядро .
Таким образом, белки класса HSP70 используют много путей для предотвращения воспалительных процессов в организме (обзор).

Внеклеточное действие белков теплового шока


Белки HSP долгое время считали цитоплазматическими, функции которых ограничены внутриклеточным компартментом. Однако в последнее время возрастает число наблюдений о том, что эти белки могут выделяться во внеклеточную среду и оказывать действие на другие клетки . Впервые это было показано на глиальных клетках гигантского аксона кальмара, освободившиеся из которых белки HSP70 переходили внутрь аксона . Работами нескольких лабораторий исследовано влияние выделенных из астроцитов или шванновских клеток HSP72 на соседние нейроны и аксоны. Внеклеточные эффекты HSP получены также на клетках эпителия , эмбриональных клетках крысы , В-лимфоцитах , дендритных и опухолевых клетках .
Показано, что внеклеточный HSP72 может индуцировать выделение цитокинов (TNF, IL-6, IL-1beta) из моноцитов, что обеспечивается рецепторами TLR2, TLR4 и активацией NFkB .
Внеклеточные HSP могут взаимодействовать с липидами клеточных мембран и встраиваться в мембраны, образуя АТФ-зависимые катионные каналы (см .). Кроме того, HSP72, взаимодействуя с фосфатидилсерином на поверхности апоптозных клеток, ускоряет гибель этих клеток .
Наблюдается значительная корреляция между повышенным уровнем сывороточного HSP70 и снижением развития атеросклероза, определяемого по толщине интимы сонной артерии ().
Терапевтическое значение может иметь также тот факт, что у больных с коронарной недостаточностью наблюдается обратная корреляция между уровнем HSP70 в сыворотке крови и степенью риска этого заболевания , показанной ангиограммой коронарной артерии (см .).

Роль белков теплового шока в иммунных реакциях

HSP и противораковая терапия

Белки теплового шока высоко экспрессируются при многих видах рака у человека и участвуют в пролиферации, дифференциации, метастазировании и узнавании опухолевых клеток иммунной системой. Они являются полезными биомаркерами канцерогенеза в некоторых тканях и сигнализируют о степени дифференциации и агрессивности некоторых видов рака . Кроме того, уровень циркулирующих HSP и анти-HSP антител может быть полезным для диагностики рака . Повышенная экспрессия HSP может также иногда предсказывать ответ на противораковое лечение . Например, HSP27 и HSP70 причастны к сопротивлению химиотерапии при раке груди, повышение уровня HSP27 предсказывает плохую реакцию на химиотерапию при лейкемии. В то же время экспрессия HSP70 предполагает хорошие химиотерапевтические эффекты при остеосаркомах (см. обзор ).
В развитии противораковой терапии с участием HSP сыграла роль их двойная функция в организме : с одной стороны - внутриклеточная цитозащитная/анти-апоптозная , а с другой - внеклеточная/иммуногенная .
Это позволило разработать 2 основные стратегии в противораковой терапии :
1) Фармакологическая модификация экспрессии HSP и их активности в качестве молекулярных шаперонов;
2) Применение HSP в противораковых вакцинах на основании их способности действовать в качестве иммунологических адъювантов .

Наиболее перспективным в качестве антиканцерной фармакологической мишени оказался белок HSP90. Его уровень составляет 1-2% от общего содержания белков в отсутствие стресса, а количество его белков-клиентов превышает 100, многие из которых связаны с онкогенезом. Повышенная экспрессия HSP90 обнаружена при опухолях груди, раке легких, лейкемиях, болезни Ходжкина, лимфомах и других онкологических заболеваниях . Поэтому ингибирование HSP90 может разрушать одновременно большое количество онкогеных сигнальных путей. Разработкой ингибиторов HSP90 занимается множество лабораторий ( , , 2007а , 2007b и др.).

Естественные ингибиторы HSP90 - гелданамицин (GA) и 17-аллиламино-17-деметоксигелданамицин (17-AAG) - взаимодействуют с АТФ-связывающим участком молекулы HSP90 с более высоким сродством, чем натуральные нуклеотиды, и препятствуют АТФ-АДФ переходам белка, нарушая активность HSP90 как шаперона, а его белки-клиенты деградируются протеасомой. Существенно, что ингибиторы HSP90, удаляя белки-клиенты в раковых клетках, не влияют на те же белки в нормальных тканях, так как их сродство к HSP90, выделенному из опухолей, в 20-200 раз выше (см .).
Подробно об естественных и искусственных ингибиторах белков теплового шока и механизмах их действия можно прочитать в обзорах , .


Способность белков теплового шока связывать пептиды-антигены легла в основу иммунотерапевтического подхода к лечению онкозаболеваний. Выделенные из опухолей онкологических больных пептидные комплексы Hsp70 и Grp96 используются в качестве антираковых вакцин для лечения и предупреждения рака. Белки теплового шока, кроме проявления шапероновой активности к опухолевым пептидным антигенам, облегчают вхождение в клетки HSP-пептидных комплексов за счет рецепторного эндоцитоза. Это позволило достаточно быстро перенести основанные на HSP вакцины от изучения на моделях животных к лечению раковых заболеваний в клинике. Улучшенные формы HSP-вакцин получаются при выделении HSP70-пептидных комплексов из дендритных клеток, слившихся с опухолевыми .

Прамод К. Сривастава (Pramod K. Srivastava, a professor of medicine and director of the Center for Immunotherapy of Cancer and Infectious Diseases at the University of Connecticut School of Medicine) - один из первых исследователей роли белков теплового шока в иммунной системе. С его участием создана компания Antigenics, успешно разрабатывающая противораковые вакцины на основе HSP, выделенных из индивидуальных опухолей пациентов .



Эти препараты, основанные на различных белках теплового шока, в настоящее время проходят клинические испытания.

Белки теплового шока при старении


По мере старения организмы утрачивают способность адекватно реагировать на внешние стрессы и поддерживать гомеостаз . Старые клетки более подвержены нарушениям и болезням, поэтому с возрастом растет восприимчивость к этим факторам.
В течение жизни стабильного белка в нем возникают различные посттрансляционные изменения. Стабильность белков нарушается за счет многочисленных вредных воздействий - окисления боковых цепей, гликации, дезаминирования аспарагиниловых и глутаминиловых остатков, что приводит к образованию изопептидных связей. Чувствительность к протеотоксичным повреждениям возрастает из-за ошибок в транскрипции и трансляции и проявляется дефектами свертывания белков . Для старения характерен рост модификаций белка, связанных с гомеостазом свертывания (см. ) . Функции шаперонов нарушаются, увеличивается потребность в деградации белков, но активность главного протеолитического аппарата, протеасомы, также снижается с возрастом , приводя к опасности гликации. Агрегация также сопровождается ингибированием протеасом и остановкой клеточного цикла. С возрастом нарушается и лизосомальная деградация белков (возможно, за счет подавления липофусцином). Накопление неправильно свернутых белков и ослабление защитных механизмов приводит к

Материал с весьма оптимистичным подзаголовком «Генно-инженерный препарат от всех видов и стадий злокачественных опухолей пациенты могут получить через три-четыре года».

Однако любой человек, хоть сколько-нибудь знающий о терапии онкологических заболеваний, при виде такого прогноза в лучшем случае удивленно поднимет брови, а в худшем — возмутится. Рассказываем, что не так с очередной «научной сенсацией».

Что случилось?

Разработка препарата, о котором рассказали в «Известиях», ведется в Государственном научно-исследовательском институте особо чистых препаратов Федерального медико-биологического агентства (ФМБА) России. Замдиректора по научной работе института, член-корреспондент РАН и доктор медицинских наук, профессор Андрей Симбирцев, в этом материале под заголовком «В России создали лекарство от рака и проверили его в космосе» рассказал корреспонденту «Известий» о «белке теплового шока», который был кристаллизован в невесомости, на МКС, и теперь проходит доклинические испытания.

Сейчас исследования проводятся на грант Министерства образования и науки, а 100 миллионов рублей на клинические испытания ученые планируют найти с помощью частных инвесторов и программы государственного 50%-ного софинансирования. Чтобы его привлечь, разработчики собираются «стучаться во все двери, потому что препарат уникальный. Мы стоим на пороге открытия совершенно нового средства лечения рака. Оно позволит помочь людям с неизлечимыми опухолями».

«Мы уже изготавливаем препарат на производственных участках НИИ», — сообщает воодушевленным журналистам Андрей Симбирцев, добавляя, что в данный момент проходят испытания на мышах, а до пациентов он дойдет всего через три-четыре года.

В чем подвох?

Все это звучит очень вдохновляюще, однако белки теплового шока действительно известны давно, но люди почему-то до сих пор не сделали из них панацею от всех видов рака. Это довольно большое семейство белков, которые активируются в ответ на стресс при повышении (а иногда и при понижении) температуры. Они помогают клетке бороться с последствиями деградации структуры других белков. Самый известный пример такого изменения — сворачивание главного компонента яичного белка, альбумина, при жарке или варке, когда он из прозрачного становится белым. Так вот, белки теплового шока устраняют последствия этих изменений: «чинят» или окончательно утилизируют деградировавшие структуры. Многие белки теплового шока являются в то же время шаперонами, которые помогают другим белкам «сворачиваться» правильно.

Справка:
Шапероны — класс белков, основной функцией которых является восстановление третичной или четвертичной структуры белков, также они участвуют в образовании и диссоциации белковых комплексов.

Белки теплового шока есть во всех клетках. Однако в разных клетках (особенно опухолевых, которые сильно отличаются при разных видах рака как друг от друга, так и от нормальных клеток организма) эти белки ведут себя по-разному. К примеру, в одних видах рака экспрессия белка HSP-70 может быть как повышенной (при злокачественной меланоме), так и пониженной (при раке почки).

Чтобы понять, о каком белке идет речь и действительно ли он используется в терапии рака и может помочь при всех его видах, мы поговорили с доктором биологических наук Александром Сапожниковым . Этот ученый — руководитель лаборатории клеточных взаимодействий Института биоорганической химии имени М.М. Шемякина и Ю.А. Овчинникова РАН, которая занимается одним из самых перспективных для разработок в этом направлении белков теплового шока уже много лет. Он так прокомментировал эту статью:

«Я не скажу, что это бред, но это абсолютно некорректная информация. Автором идеи применения белков теплового шока с молекулярной массой 70 килодальтон (так называемые БТШ-70, по-английски HSP70) является мой друг и коллега Борис Маргулис. Он работает в Институте цитологии в Санкт-Петербурге.

Он и его жена Ирина Гужова занимаются этим белком всю жизнь (я тоже занимаюсь им много лет, но не исследованиями, связанными с терапией рака). Формально заведующей лабораторией является Ирина, она занимается изучением того, как белок связан с нейродегенеративными заболеваниями, а Борис — заведующий отделом. Он первый в мире человек, который предложил применять «голый», не нагруженный никакими опухолево-ассоциируемыми антигенами, белок.

Я не верил в его представления о таком применении этого белка (собственно, пока и не доказано, что это будет эффективно). Если «плясать от печки», есть некий индус, Прамод Сривастава , который в Индии родился, но учился, живет и работает в Америке. Он давным-давно сделал не просто «вакцину» против опухоли с помощью БТШ-70, но и открыл клинику и лечит ею онкологических больных. Сривастава выделяет этот белок прямо из опухоли: берет биопсию у пациентов, выделяет его из кусочков ткани (есть специальные способы получить очень высокую фракцию этого белка).

Однако белок, который получают из тканей онкологических больных, находится в прочной связи с опухоль-ассоциированными пептидами — теми признаками опухоли, которые распознает иммунная система. Поэтому, когда этот комплекс вводят больным, у большого количества больных вырабатывается иммунный ответ, и получается позитивный эффект для больного.

На самом деле, по статистике, этот эффект не превышает эффект от применения химиотерапии. Но все-таки химиотерапия «травит» организм, а вот такая «вакцинация» организм не «травит». Это очень давняя история, такой подход давным-давно применяется в клинике.
Александр Сапожников. Доктор биологических наук, профессор

Что касается Бориса Маргулиса, он (в частности, на базе моей лаборатории) показал (и опубликовал результаты своей работы), что если чистый белок, без всякой опухолевой нагрузки, добавить к опухолевым клеткам, то этот экзогенный белок заставляет опухолевые клетки выставлять на свою поверхность те самые опухолево-ассоциированные пептиды, которые в нормальном состоянии находятся внутри этих клеток, в цитоплазме. Тогда иммунная система их распознает, и организм будет своими силами отторгать эти клетки, бороться с опухолью.

Это было показано в культуре in vitro , то есть не в организме, а в пробирке. К тому же Борис Маргулис претендовал только на детские лейкемии, поскольку он связан с клиницистами в Питере. То, что Симбирцев в своем интервью сказал, — это уже расширение вот такого метода применения голого, чистого белка.

Механизм действия этого чистого белка — заставлять опухоль вытаскивать на поверхность (как сам Маргулис это назвал, «выдавливать») эти пептиды со своим эндогенным белком. Этот белок есть во всех клетках, и в мире нет ни единой клетки, у которой не было бы этого белка. Это очень древний, очень консервативный протеин, он есть у всех (о вирусах я не веду сейчас речи).

Сам Маргулис не потянул бы доклинические исследования, он получил (лет пять назад) грант совместно с Институтом особо чистых препаратов. В этом институте, видимо, и работает этот Симбирцев, его фамилию я слышал много раз, но коль скоро это Федеральное медико-биологическое агентство, к которому относится Институт иммунологии на Каширке, в котором я много лет работал, то, скорее всего, это Институт особо чистых препаратов, с которым он получил грант на доклинические исследования. В советские годы это было Третье управление Минздрава. Именно с этим институтом был получен грант на доклинику от Минобра на 30 миллионов на три года, который закончился два года назад.

Все бумажные дела Институт особо чистых препаратов сделал, они отчитались по своему гранту, что касается следующей стадии, продвижения препарата, там тоже нужны деньги. Это первая стадия клинических исследований. Тут Борис Маргулис, насколько я понимаю, уже отошел от разработок, отдав это на откуп Институту особо чистых препаратов.

Они делают этот белок, сделали биотехнологию, у меня он даже в холодильнике есть, Борис давал его для испытаний. Они в больших количествах его делают, хранят в лиофилизированной форме (в сухом виде), в стерильных ампулах. Собственно, этот препарат и надо, может быть с какими-то добавками, применять в клинических испытаниях. Но для этого нужны деньги.

Увидев случайно новость с интервью Симбирцева, я прочитал, послал Маргулису, спросил, читал ли он. Борис мне ответил, что Андрей (с которым он хорошо знаком) сделал какую-то глупость, даже не сослался на авторов. Автором этой идеи (применять чистый белок как противоопухолевый препарат в онкологии), повторюсь, является Борис Маргулис. Но, насколько я от него слышал в последнее время, он от этой проблематики отошел.

Я занимаюсь этим белком, но как иммуномодулятором, как и моя лаборатория. Мы немножко работали с противоопухолевыми свойствами, на мышиных моделях. Там действительно получились хорошие результаты. Я имею в виду «голый» белок, он просто обладает иммуностимулирующими свойствами. Кстати, еще большой вопрос, что является причиной его иммуностимулирующих свойств: сам белок или какие-то маленькие примеси, например липополисахариды. Этот белок получают в бактериальной культуре (в E.coli ), это самая распространенная техника получения рекомбинантных белков. Липополисахариды (ЛПС) — компонент клеточной стенки бактерий, и очистить культуру от этой примеси до конца очень сложно. Конечно, очищают, но какие-то мизерные концентрации остаются. Эти примеси ЛПС тоже обладают иммуностимулирующими свойствами просто потому, что иммунная система в процессе эволюции выработала свою защиту от бактерий. Как только «запах» бактерий появляется в организме, иммунная система активируется. Поэтому многие авторы сейчас считают, что иммуностимулирующие свойства этого белка, которые модулируют и противоопухолевый ответ, вызваны не БТШ как таковым, а его примесью. Но этот вопрос научный, дискуссионный и не имеет отношения к практике.

Сейчас, повторюсь, Борис Маргулис отходит от этой темы, от онкологии, и работает над малыми молекулами, которые способны регулировать продукцию этого белка. Он связался с химиками, которые умеют делать ингибиторы — такие специфические киназы, какие-то ферменты внутри клеток, которые прекращают их работу. Ингибиторы могут сказать какому-то ферменту: «Нет, ты не имеешь права работать».

Это делается очень просто: все ферменты имеют центр связывания с субстратом, и, если взять какую-то маленькую молекулу, которая встроится в этот центр связывания субстрата, он уже не сможет этот субстрат обрабатывать. Борис сейчас как раз занимается такими молекулами, которые ингибируют внутриклеточный синтез этого БТШ-70. И, действительно, такие молекулы очень актуальны, и не только для фундаментальной биологии, но и для практики, клинической медицины».

Генно-инженерный препарат от всех видов и стадий злокачественных опухолей пациенты могут получить через три-четыре года

В Государственном научно-исследовательском институте особо чистых препаратов Федерального медико-биологического агентства (ФМБА) России завершаются доклинические испытания «Белка теплового шока» — лекарства, которое может совершить революцию в онкологии. Это принципиально новое средство для лечения злокачественных опухолей, полученное с помощью биотехнологий. Ученые предполагают, что оно поможет людям с неизлечимыми сегодня опухолями. Успех в создании препарата был достигнут с помощью космического эксперимента. Об этом корреспонденту «Известий» Валерии Нодельман рассказал замдиректора института по научной работе, член-корреспондент РАН, доктор медицинских наук, профессор Андрей Симбирцев.

- Что является основным действующим веществом нового лекарства от злокачественных образований?

Наш препарат имеет рабочее название «Белок теплового шока» — по основному действующему веществу. Это молекула, которая синтезируется любыми клетками организма человека в ответ на различные стрессорные воздействия. О ее существовании ученые знали давно. Первоначально предполагалось, что белок может только защищать клетку от повреждения. Позже выяснилось, что помимо этого он обладает уникальным свойством — помогает клетке показывать свои опухолевые антигены иммунной системе и тем самым усиливает противоопухолевый иммунный ответ.

- Если организм вырабатывает такие молекулы, почему же он сам не справляется с раком?

Потому что количество этого белка в организме минимально. Его недостаточно для достижения терапевтического эффекта. Также невозможно просто забрать эти молекулы из здоровых клеток, чтобы ввести в больные. Поэтому была разработана особая биотехнология по синтезированию белка в количестве, необходимом для создания препарата. Мы выделили ген человеческой клетки, который отвечает за производство белка, и клонировали его. Затем создали штамм-продуцент и заставили бактериальную клетку синтезировать человеческий белок. Такие клетки хорошо размножаются, что позволило нам получить неограниченное количество белка.

- Ваше изобретение состоит в создании технологии получения «Белка теплового шока»?

Не только. Мы также смогли изучить его структуру, расшифровать механизм противоопухолевого действия на молекулярном уровне. ФМБА обладает уникальной возможностью проводить медицинские исследования с помощью космических программ. Дело в том, что для рентгеноструктурного анализа действия белка необходимо сформировать из него сверхчистый кристалл. Однако в условиях земного притяжения получить его невозможно — белковые кристаллы растут неравномерно. Родилась идея вырастить кристаллы в космосе. Такой эксперимент был проведен в 2015 году. Мы упаковали сверхчистый белок в капиллярные трубочки и отправили их на МКС. За шесть месяцев полета в трубочках сформировались идеальные кристаллы. Они были спущены на землю и проанализированы в России и Японии (там есть сверхмощное оборудование для рентгеноструктурного анализа).

- А эффективность препарата уже доказана?

Мы провели опыты на мышах и крысах, у которых развивались меланомыи саркомы. Курсовое введение препарата в большинстве случаев приводило к полному излечению даже на поздних стадиях. То есть уже можно с уверенностью сказать, что белок обладает необходимой для лечения рака биологической активностью.

Почему вы думаете, что «Белок теплового шока» поможет не только при саркоме, но и при других видах злокачественных образований?

В основе нового препарата — молекула, которая синтезируется всеми видами клеток. Никакой специфичности у нее нет. На другие виды опухолей препарат будет действовать благодаря этой универсальности.

- Нужно ли будет для создания препарата каждый раз отправлять белок в космос?

Нет. Создание кристалла в невесомости требовалось только для научного этапа разработки препарата. Космический эксперимент лишь подтвердил, что мы на правильном пути. А производство будет исключительно земным. Собственно, мы уже изготавливаем препарат на производственных участках НИИ. Он представляет собой раствор белка, который можно вводить пациентам. Мышам мы вводим его внутривенно. Но, возможно, во время клинических испытаний найдем более эффективные подходы — например, оптимальной может оказаться адресная доставка белка в опухоль.

- Есть ли побочные эффекты у нового препарата?

Пока никаких проблем не выявлено. Во время тестирования «Белок теплового шока» не проявил токсичности. Но окончательно мы сможем сделать вывод о полной безопасности препарата только после завершения доклинических исследований. На это потребуется еще год.

- И потом вы сможете начать клинические испытания?

Это целиком зависит от того, удастся ли нам найти источник их финансирования. На доклинический этап мы получили грант от Министерства образования и науки. Клинические исследования стоят очень дорого — около 100 млн рублей. Обычно они проводятся на условиях софинансирования: находится частный инвестор, который вкладывает средства, а государство возвращает 50% в случае успешного завершения. Мы рассчитываем на поддержку Минпромторга или Минздрава.

- А частный инвестор уже найден?

Нет. Нам предстоит большая работа с его поисками. Можно было бы предложить японцам выступить инвесторами, но хочется начать с России, так как это отечественная разработка. Будем стучаться во все двери, потому что препарат уникальный. Мы стоим на пороге открытия совершенно нового средства лечения рака. Оно позволит помочь людям с неизлечимыми опухолями.

- Ведутся ли подобные разработки за рубежом?

Мы слышали о попытках получить препарат «Белка теплового шока» в разных странах. Такие работы ведутся, например, в США, Японии. Но пока никто не опубликовал их результаты. Я надеюсь, что сейчас мы опережаем в этом вопросе зарубежных коллег. Главное — не остановиться на этом пути. А это может случиться только по одной причине — из-за нехватки финансирования.

- Когда реально, при всех благоприятных обстоятельствах, человечество сможет получить лекарство от рака?

Полные клинические испытания обычно проходят два-три года. К сожалению, быстрее не получится — это серьезное исследование. То есть с учетом финальной стадии доклинических исследований пациенты получат новое лекарство через три-четыре года.

Александр Сапожников не согласен с таким теоретическим обоснованием механизма действия лекарства. По его словам, HSP70 может работать по другой схеме, которую только предстоит изучить, однако факт остается фактом - на клеточных культурах и ряде опухолей в двух линиях крыс, которым были привиты «человеческие» опухолевые клетки, белок действительно показывает активность.

По словам авторов работы, температура, при которой работают с HSP70 на культурах клеток, составляет 43°C, и она слишком высока для живых организмов, однако там, судя по всему, включаются иные механизмы, которые также только предстоит понять. Это касается и действия экзогенного неклеточного белка теплового шока внутри организма. «У каждого из нас в кровотоке присутствует достаточно высокий уровень HSP70 - до 900 нанограммов на миллилитр. Мы вводили его в животное и пытались смотреть, что с белком происходит дальше. В течение 40 минут мы видели следы HSP70 в крови, а потом он пропал. Есть мнение, что белок распадается, но мы так не думаем».

Впечатляющие результаты в ожидании проверки

Ирина Гужова рассказала и о дальнейших испытаниях препарата: «Мы испытывали этот механизм на мышиной меланоме B16, которая растет подкожно, и использовали в виде геля, наносимого на поверхность кожи. Результат получился впечатляющий: выживаемость мышей была гораздо выше, чем у контрольной группы, которую лечили гелем без действующего вещества или не лечили вообще. Разница была примерно в десять дней. Для мышей и данного типа опухоли это очень хорошая отсрочка. Подобные результаты были показаны и на крысиной глиоме C6 (это опухоль, которая растет непосредственно в мозге).

Животные, которых лечили однократной инъекцией в мозг, получали дополнительно десять дней жизни, а животные, которым вводили белок постоянно в течение трех дней с помощью помпы, эта продолжительность увеличивалась еще на десять дней, так как опухоль росла медленнее. Мы показали, что если обеднить популяцию Т-лимфоцитов от мыши, которая имела опухоль, и убрать уже «наученные» NK-клетки или CD8-положительные лимфоциты, то они не будут узнавать опухоль так хорошо. Можно сделать вывод, что основная функция HSP70 в этом процессе - активация специфического иммунитета».

Эти данные побудили ученых провести ограниченное исследование в рамках клиники имени Поленова (НИИ Нейрохирургии в Санкт-Петербурге). «В это время в нашем коллективе был нейрохирург Максим Шевцов, который одновременно с аспирантурой Бориса Александровича (Маргулиса, - прим. сайт) проходил ординатуру в этом НИИ. Он убедил своего руководителя, профессора Хачатуряна, испытать этот препарат. По тогдашнему законодательству достаточно было решения ученого совета и информированного согласия пациентов, и нам было выделено 25 больных. У них у всех были различные опухоли мозга, и они все получали то, что им полагалось по страховке, но плюс после хирургического удаления опухоли Максим вводил в операционное ложе раствор HSP70.

Проблема в том, что опухоли мозга удалить полностью сложно. Всегда остаются маленькие кусочки, которые опасно удалять, потому что вместе с ними можно удалить личность, и эти кусочки дают рецидивы. Но результаты оказались совершенно потрясающими: после операции у больных увеличивалось количество клеток специфического иммунитета, понижалось количество проопухолевых («перешедших на сторону опухоли») Т-лимфоцитов и уменьшалось количество интерлейкина-10 (информационной молекулы иммунной системы).

Исследование было только пилотное, не рандомизированное, группы контроля тоже не было, и проводилось оно в 2011 году. В том же году был принят закон, согласно которому такие испытания запрещены, и их пришлось прекратить, едва начав. У нас осталось 12 прооперированных пациентов. Кто знаком с клинической частью исследований, тот имеет представление о том, насколько сложно отследить судьбы пациентов после того, как каждый из них покидает клинику. Поэтому мы знаем только о восьми, которые остались доступны для контакта, и все они живы до сих пор. На начало осени прошлого года они были вполне здоровы, и те, кто продолжал учиться, осенью пошли в школу, хотя средний прогноз продолжительности жизни с обнаруженной глиомой - 14 месяцев».

Сейчас, по словам докладчиков, доклинические испытания подходят к концу, и препарату необходима многоступенчатая проверка на пациентах, которая займет несколько лет (вот почему в статье «Известий» фигурировал такой неправдоподобно короткий срок до выхода препарата на рынок - 3-4 года).

Александр Сапожников также подчеркнул важность клинических испытаний: «Привитая мышам опухоль и человеческая - это небо и земля. Препарат может работать на этой опухоли, но быть неэффективным ни на обычной опухоли мыши, ни на человеческой. Успокойте своих коллег, лекарства от всех болезней сразу не бывает».

Так считают и сами исследователи. «На данных стадиях все работает (и очень хорошо), но, конечно же, это не то лекарство, которое поднимает Лазаря, - заявляет Ирина Гужова, - однако оно достаточно эффективно и достойно того, чтобы пройти клинические испытания. И мы надеемся, что это случится».

Просто космос

У читателя может возникнуть резонный вопрос: откуда вообще взялся космос? Ирина Гужова поясняет: «Дело в том, что испытания проходили на базе Института особо чистых препаратов, у сотрудников которого хороший опыт в регистрации патентов и написании бумаг, поэтому мы это дело отдали им. Одновременно они начали производство этого белка, а мы делали опыты на животных. Но в процессе к ним обратился представитель Роскосмоса и спросил, а нет ли у нас какого-то незакристаллизованного белка, чтобы закристаллизовать в космосе, на орбите. И им отдали HSP70, кристаллы пытались вырастить на орбите, но ничего не получилось».

Проблема оказалась в строении белка. Очень подвижная часть в структуре белка мешала кристаллизации, поэтому его стали пытаться закристаллизовать по кусочкам, связывать подвижную часть специальной молекулой, чтобы она его «держала». Пытаются до сих пор. «Отсюда выросла эта история про клетки, которые растут в космосе и лечат всех от рака», - комментирует Ирина Гужова.

Она также сообщила, что для испытаний в космосе и на мышах белок подвергли очень высокой степени очистки - около 99%. Что касается сомнений, что активирует иммунитет не шаперон, а липополисахарид (ЛПС) - компонент клеточной стенки бактерий, в которых нарабатывают этот белок, - такая вероятность невелика. Хотя ЛПС «прилипает» к HSP очень сильно, и очистить от самых мизерных его примесей белок довольно трудно. Ученые ставят дополнительные контроли, чтобы показать, что не он, а именно шаперон - причина эффекта препарата. Например, препарат могут кипятить, что не влияет на ЛПС, но разрушает структуру белка. Тогда его свойства HSP теряются, и препарат перестает работать, чего бы не произошло, если бы в нем действовал в основном бактериальный ЛПС.

Кроме того, исследователи сравнивали эффект введения компонентов клеточной стенки бактерий с эффектом от HSP70, и эти сравнения явно были в пользу последнего.

«Не говорили глупостей. И чего? – Ноль эмоций!»

Ирина сообщает, что побочных реакций в ходе испытаний ученые пока не обнаружили, но они могут быть отсроченными. «Я считаю, что исследователь в первую очередь должен на себе все попробовать сам, и прошла два курса шаперонотерапии. Никаких побочных эффектов не было, наоборот, казалось, что проходят мелкие болячки и крылья вырастают за спиной».

«С другой стороны, все, что было в СМИ, - настоящее безобразие, - отмечает исследователь. - Но, как говорится, не было бы счастья, да несчастье помогло: уже сейчас в Институт особо чистых препаратов поступают звонки с предложениями помочь с клиническими испытаниями. Мы выступали на конференциях и в разных более скромных СМИ, говорили о том же самом, но выверяли слова, не говорили глупостей. И чего? - Ноль эмоций! А тут пронеслась такая вот муть по экранам, и пожалуйста! Такое интересное общество, такая интересная страна».

Впрочем, согласно источникам сайт, интервью, с которого все началось, Симбирцев дал вынужденно. предложили дать интервью, чтобы стимулировать интерес к проблемам Института и привлечь дополнительное финансирование на клинические испытания. Кроме того, ходят слухи о возможной утрате институтом юридического лица вследствие происходящих по всей стране слияний научных организаций. Видимо, ученый оказался не готов подробно и популярно рассказать газете о происходящем. «В этот раз все, что могло быть понято неправильно, было понято неправильно», - замечает источник.

В результате ситуация все больше становится похожа на небезызвестную басню, когда Роскосмос и госструктуры, раздающие гранты, рвутся в облака, ожидая немедленных результатов от фундаментальной науки, рак пятится назад, журналисты разливают структурированную воду… А российская наука в очередной раз оказывается в незавидном положении, вынужденная оправдываться за преступления, которых не совершала.