Имеет огромное значение в обменных процессах организма человека. Она включает в себя плазму и взвешенные в ней форменные элементы: эритроциты, тромбоциты и лейкоциты, которые занимают около 40-45 %, на входящие в состав плазмы элементы приходится 55-60 %.

Что такое плазма?

Плазма крови является жидкостью с однотипной вязкой структурой светло-желтого цвета. Если рассматривать ее как взвесь, можно обнаружить кровяные клетки. Плазма обычно прозрачная, но употребление в пищу жирных продуктов может сделать ее мутной.

Каковы же основные свойства плазмы? Об этом далее.

Состав плазмы и функции её частей

Большая часть состава плазмы (92 %) занята водой. Помимо этого, она содержит такие вещества, как аминокислоты, глюкоза, белки, ферменты, минералы, гормоны, жир, а также жироподобные вещества. Главным белком является альбумин. Он имеет невысокую молекулярную массу и занимает более 50 % во всём объёме белков.

Состав и свойства плазмы интересуют многих студентов-медиков, и следующая информация будет для них полезной.

Белки принимают участие в обмене веществ и синтезе, регулируют онкотическое давление, отвечают за сохранность аминокислот, переносят разного рода вещества.

Также в составе плазмы выделяют крупномолекулярные глобулины, которые производятся органами печени и иммунной системы. Различаются альфа-, бета- и гамма-глобулины.

Фибриноген - белок, который образуется в печени, обладает свойством растворимости. Из-за влияния тромбина может потерять этот признак и стать нерастворимым, вследствие чего появляется кровяной сгусток там, где был повреждён сосуд.

Плазма крови, помимо вышеперечисленного, содержит белки: протромбин, трансферрин, гаптоглобин, комплемент, тироксинсвязывающий глобулин и С-реактивный белок.

Функции плазмы крови

Она выполняет очень много функций, среди которых выделяются:

Транспортная - перенос продуктов обмена веществ и кровяных клеток;

Связывание жидких сред, расположенных за пределами кровеносной системы;

Контактная - обеспечивает связь с тканями в организме с помощью внесосудистых жидкостей, что позволяет плазме осуществлять саморегуляцию.

Физико-химические свойства плазмы

Она применяется в медицине в качестве стимулятора регенерации и заживления тканей организма. Белками, входящими в состав плазмы, обеспечивается свертываемость крови, осуществление транспортировки питательных веществ.

Также благодаря им происходит функционирование кислотно-основного гемостаза, поддерживается агрегатное состояние крови. Альбуминами выполняется синтез в печени. Питаются клетки и ткани, осуществляется транспортировка желчных веществ, а также резерв аминокислот. Выделим основные химические свойства плазмы:

  • Альбуминами доставляются лекарственные компоненты.
  • α-глобулинами активизируется выработка белков, осуществляется транспортировка гормонов, микроэлементов, липидов.
  • β-глобулинами выполняется транспортировка катионов таких элементов, как железо, цинк, фосфолипиды, стероидные гормоны и желчные стерины.
  • В G-глобулинах содержатся антитела.
  • От фибриногена зависит свертываемость крови.

Самыми значимыми свойствами крови физико-химического характера, а также её компонентов (в том числе и свойствами плазмы) являются следующие:

Осмотическое и онкотическое давление;

Суспензионная устойчивость;

Коллоидная стабильность;

Вязкость и удельный вес.

Осмотическое давление

Осмотическое давление напрямую связано с концентрацией в плазме молекул растворённых веществ, суммой осмотических давлений разных ингредиентов в её составе. Такое давление представляет собой жёсткую гомеостатическую константу, которая у здорового человека равна примерно 7,6 атм. Оно осуществляет переход растворителя от менее концентрированного к более насыщенному посредством полунепроницаемой мембраны. Играет значимую роль в рассредоточении воды между клетками и внутренней средой организма. Основные свойства плазмы рассмотрим ниже.

Онкотическое давление

Онкотическое давление - это давление осмотического типа, создающееся в белками (другое название - коллоидно-осмотическое). Поскольку белки плазмы обладают плохой проходимостью в тканевую среду через стенки капилляров, онкотическое давление, которое ими создаётся, удерживает воду в крови. При этом осмотическое давление одинаковое в тканевой жидкости и плазме, а онкотическое гораздо выше в крови. Кроме того, уменьшенная концентрация белков в тканевой жидкости связана с тем, что они вымываются лимфой из внеклеточной среды; между тканевой жидкостью и кровью есть перепад насыщенности белка и онкотического давления. Так как в составе плазмы наиболее высокое содержание альбуминов, то онкотическое давление в ней создаётся преимущественно данным видом белков. Уменьшение их в плазме приводит к потере воды, отёкам тканей, а повышение - к задержке в крови воды.

Суспензионные свойства

Суспензионные свойства плазмы взаимосвязаны с коллоидной стабильностью белков в ее составе, то есть с сохранением клеточных элементов в состоянии взвеси. Показатель данных свойств крови оценивается по скорости оседания эритроцитов (СОЭ) в недвижимом кровяном объёме. Наблюдается следующее соотношение: чем больше альбуминов содержится по сравнению с менее устойчивыми тем выше суспензионные свойства крови. Если же повышается уровень фибриногена, глобулинов и других нестабильных белков, СОЭ растёт и суспензионная способность снижается.

Коллоидная стабильность

Коллоидная стабильность плазмы детерминирована свойствами гидратации белковых молекул и присутствия на их поверхности двойного слоя ионов, создающих фи-потенциал (поверхностный), в который включён дзета-потенциал (электрокинетический), находящийся на стыке между коллоидной частицей и жидкостью, окружающей её. Он обусловливает возможность скольжения частиц в коллоидном растворе. Чем выше дзета-потенциал, тем сильнее белковые частицы отталкивают друг друга, и на этом основании определяется устойчивость коллоидного раствора. Величина его значительно больше у альбуминов в составе плазмы, и её стабильность чаще всего определяется данными белками.

Вязкость

Вязкость крови - способность её сопротивляться течению жидкости во время перемещения частиц с помощью внутреннего трения. С одной стороны, это сложные взаимоотношения между макромолекулами коллоидов и водой, с другой - между форменными элементами и плазмой. Вязкость плазмы выше, чем у воды. Чем больше она содержит крупномолекулярных белков (липопротеинов, фибриногена), тем сильнее вязкость плазмы. В целом данное свойство крови отражается на общем периферическом сосудистом сопротивлении кровотоку, то есть обусловливает функционирование сердца и сосудов.

Удельный вес

Удельный вес крови связан с количеством эритроцитом и содержанием в них гемоглобина, структуры плазмы. У взрослого человека средних лет колеблется от 1,052 до 1,064. За счёт различного содержания эритроцитов у мужчин такой показатель выше. Кроме того, удельный вес возрастает из-за потери жидкости, обильном потении в процессе физической трудовой деятельности и высокой температуры воздуха.

Мы рассмотрели свойства плазмы и крови.

Вязкость крови обусловлена наличием в ней белков и красных кровяных телец - эритроцитов . Если вязкость воды принять за 1, то вязкость плазмы будет равна 1,7-2,2 , а вязкость цельной крови около 5,1 .

Относительная плотность крови зависит в основном от количества эритроцитов, содержания в них гемоглобина и белкового состава плазмы крови. Относительная плотность крови взрослого человека равна 1,050-1,060 , плазмы -1,029-1,034 .

Состав крови.

Периферическая кровь состоит из жидкой части - плазмы и взвешенных в ней форменных элементов или кровяных клеток (эритроцитов, лейкоцитов, тромбоцитов)

Плазма крови, е сли дать крови отстояться или провести ее центрифугирование, предварительно смешав с противосвертывающим веществом, то образуются два резко отличающихся друг от друга слоя: верхний - прозрачный, бесцветный или слегка желтоватый - плазма крови; нижний - красного цвета, состоящий из эритроцитов и тромбоцитов. Лейкоциты за счет меньшей относительной плотности располагаются на поверхности нижнего слоя в виде тонкой пленкибелого цвета.

Объемные соотношения плазмы и форменных элементов определяют с помощью гематокрита. В периферической крови плазма составляет приблизительно 52-58% объема крови, а форменные элементы 42

В состав плазмы крови входят вода (90-92%) и сухой остаток (8-10%). Сухой остаток состоит из органических и неорганических веществ.

К органическим веществам плазмы крови относятся: 1) белки плазмы - альбумины (около 4,5%), глобулины (2-3,5%), фибриноген (0,2-0,4%). Общее количество белка в плазме составляет 7-8%;

2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота ) составляет 11 -15 ммоль/л (30-40 мг%). При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;

3) безазотистые органические вещества: глюкоза - 4,4-6,65 ммоль/л (80-120 мг%), нейтральные жиры, липиды;

4) ферменты и проферменты : некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.

Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы - Ка + , Са 2+ , К + , Мg 2+ и анионы Сl, НРO4, НСО3

Из тканей организма в процессе его жизнедеятельности в кровь поступает большое количество продуктов обмена, биологически активных веществ (серотонин, гиста-мин), гормонов; из кишечника всасываются питательные вещества, витамины и т. д. Однако состав плазмы существенно не изменяется. Постоянство состава плазмы обеспечивается регуляторными механизмами, оказывающими влияние на деятельность отдельных органов и систем организма, восстанавливающих состав и свойства его внутренней среды.

Человека (и домашних животных) равна 1,050-1,060, для мужчин в среднем 1,057, для женщин - 1,053. Она зависит главным образом от количества или содержащегося в них гемоглобина и в меньшей степени — от состава жидкой части крови; возрастает после потери организмом, например, после потоотделения. При кровопотерях плотность уменьшается.

Вязкость крови обусловлена внутренним при перемещении одних ее частиц по отношению к другим. При определении вязкости крови единицей вязкости служит вода.

Вязкость цельной крови человека в физиологических условиях колеблется от 4 до 5, а вязкость плазмы крови - от 1,5 до 2. Вязкость цельной крови зависит главным образом от количества эритроцитов в крови и их объема и в меньшей степени - от (преимущественно от количества находящихся в ней белков и в меньшей степени - от содержания в ней солей).

Вследствие набухания эритроцитов вязкость венозной крови больше вязкости артериальной крови. Длительная работа средней тяжести понижает вязкость крови, а тяжелая работа повышает ее.

Солевой состав, осмотическое и коллоидно-осмотическое (онкотическое) давление крови

Минеральные соли плазмы составляют около 0,9-1%. Количества солей в плазме относительно постоянны и в нормальных условиях колеблются в небольших пределах. У различных видов животных содержание минеральных веществ в плазме крови неодинаково.

Физиологическое значение электролитов крови заключается в том, что они: 1) поддерживают относительное постоянство осмотического крови; 2) поддерживают относительное постоянство активной реакции крови; 3) влияют на и 4) влияют на состояние коллоидов.

Относительное постоянство осмотического давления крови имеет большое биологическое значение, так как является условием сохранения относительного постоянства осмотического давления в тканях. Резкие колебания осмотического давления в тканях приводят к нарушениям их деятельности и даже к их гибели. Постоянство осмотического давления крови сохраняет целость эритроцитов.

В нормальных условиях осмотическое давление в эритроцитах, в плазме крови и в клетках тканей и органов человека и млекопитающих животных равно 778316 - 818748 Па.

Несмотря на большое содержание белков, число белковых в плазме невелико из-за их огромного молекулярного веса. Поэтому создаваемое ими коллоидное осмотическое (онкотическое) давление плазмы равно всего 3325 - 3990 Па, а осмотическое давление плазмы крови поддерживается на определенном, относительно постоянном уровне главным образом минеральными веществами.

Среди минеральных веществ главная роль в поддержании осмотического давления принадлежит - хлористому натрию. Величина осмотического давления определяется криоскопическим методом по депрессии, или понижению точки замерзания крови ниже 0°. Показатель депрессии обозначается ∆ (дельта). У человека ∆ крови равна 0,56° (0,56-0,58°), следовательно, молекулярная концентрация в плазме крови составляет около 0,3 г-моль на 1 дм 3 .

Реакция крови

Активная реакция крови, как и всякого раствора, зависит от концентрации водородных (Н +) и гидроксильных (ОН —) ионов. Средняя рН крови человека, лошади и собаки при 37°С равна 7,35. Таким образом, реакция крови слабощелочная.

Тела не влияет на рН крови, которая сохраняется со значительно большим постоянством, чем температура тела. Это постоянство рН обеспечивается работой выделительных органов, а также составом эритроцитов и кровяной плазмы. То, что состав плазмы крови имеет существенное значение для поддержания постоянства рН, доказывается тем обстоятельством, что для сдвига реакции в щелочную сторону к плазме нужно добавить приблизительно в 70 раз больше едкого натра, чем к чистой воде, а для сдвиг а реакции в кислую сторону нужно прибавить более чем в 3,25 раз больше соляной кислоты, чем к воде (см. так же статью « «). Постоянство реакции крови зависит от буферных систем.

Областью механики, изучающей особенности деформации и течения реальных сплошных сред, одни из представителей которых - неньютоновские жидкости, имеющие структурную вязкость, выступает реология. В данной статье рассмотрим реологические свойства станет понятно.

Определение

Типичная неньютоновская жидкость - это кровь. Плазмой ее называют, если она лишена форменных элементов. Кровяной сывороткой является плазма, в которой отсутствует фибриноген.

Гемореология, или реология, изучает механические закономерности, в особенности как изменяются физколлоидные свойства крови при циркуляции с различной скоростью и на разных участках русла сосудов. Ее свойства, кровеносного русла, сократительная способность сердца определяют движение крови в организме. Когда линейная скорость течения мала, кровяные частицы смещаются параллельно оси сосуда и друг к другу. В таком случае у потока слоистый характер, а течение называется ламинарным. Так в чем же заключаются реологические свойства? Об этом - далее.

Что такое число Рейнольдса?

В случае увеличения линейной скорости и превышения определенной величины, различной для всех сосудов, ламинарное течение превратится в вихревое, беспорядочное, называемое турбулентным. Скорость перехода ламинарного движения в турбулентное определяет число Рейнольдса, составляющее для кровеносных сосудов приблизительно 1160. По данным о числах Рейнольдса, турбулентность может быть только в тех местах, где ветвятся крупные сосуды, а также в аорте. По многим сосудам жидкость движется ламинарно.

Скорость и напряжение сдвига

Не только объемная и линейная скорость кровотока имеют значение, еще два важных параметра характеризуют движение к сосуду: скорость и напряжение сдвига. Напряжением сдвига характеризуется сила, действующая на единицу сосудистой поверхности в тангенциальном направлении к поверхности, измеряемая в паскалях или дин/см 2 . Скорость сдвига измеряют в секундах обратных (с-1), а означает она величину градиента скорости движения между движущимися параллельно слоями жидкости на единицу расстояния между ними.

От каких показателей зависят реологические свойства?

Отношение напряжения к скорости сдвига определяет вязкость крови, измеряемую в мПас. У цельной жидкости вязкость зависит от диапазона скорости сдвига 0,1-120 с-1 . Если скорость сдвига >100 с-1 , вязкость изменяется не так выраженно, а по достижении скорости сдвига 200 с-1 почти не меняется. Величина, измеренная при высокой скорости сдвига, называется асимптотической. Принципиальные факторы, которые влияют на вязкость, - это деформируемость элементов клеток, гематокрит и агрегация. А с учетом того, что эритроцитов по сравнению с тромбоцитами и лейкоцитами гораздо больше, их в основном определяют красные клетки. Это отражается на реологических свойствах крови.

Факторы вязкости

Самый главный определяющий вязкость фактор - объемная концентрация эритроцитов, их средний объем и содержание, это называется гематокритом. Он составляет приблизительно 0,4-0,5 л/л и определяется центрифугированием из пробы крови. Плазма - это жидкость ньютоновская, вязкость которой определяет состав белков, и зависит она от температуры. На вязкость больше всего влияют глобулины и фибриноген. Некоторые исследователи считают, что более важный фактор, который ведет к изменению вязкости плазмы, - это соотношения белков: альбумин/фибриноген, альбумин/глобулины. Увеличение происходит при агрегации, определяемое неньютоновским поведением цельной крови, что обусловливает агрегационная способность эритроцитов. Агрегация эритроцитов физиологическая является обратимым процессом. Вот что это такое - реологические свойства крови.

Образование эритроцитами агрегатов зависит от факторов механических, гемодинамических, электростатических, плазменных и других. В наше время существует несколько теорий, которые объясняют механизм эритроцитной агрегации. Наиболее известна сегодня теория мостикового механизма, по которой мостики из крупномолекулярных белков, фибриногена, Y-глобулинов адсорбируются на поверхности эритроцитов. Сила агрегации чистая - это разность между сдвиговой силой (вызывает дезагрегацию), слой электростатического отталкивания эритроцитов, которые заряжены отрицательно, силой в мостиках. Механизм, отвечающий за фиксацию отрицательно заряженных макромолекул на эритроцитах, то есть Y-глобулина, фибриногена, пока еще не совсем понятен. Существуем мнение, что молекулы сцепляются благодаря дисперсным силам Ван-дер-Ваальса и слабых водородных связей.

Что помогают оценить реологические свойства крови?

По какой причине происходит агрегация эритроцитов?

Объяснение агрегации эритроцитов также объясняют истощением, отсутствием высокомолекулярных белков близко к эритроцитам, в связи с чем появляется взаимодействие давления, по природе схожее с давлением макромолекулярного раствора осмотическим, приводящим к сближению частиц суспендированных. К тому же существует теория, связывающая агрегацию эритроцитов с эритроцитарными факторами, приводящими к уменьшению дзета-потенциала и изменению метаболизма и формы эритроцитов.

Из-за взаимосвязи вязкости и агрегационной способности эритроцитов, чтобы оценить реологические свойства крови и особенности движения ее по сосудам, нужно провести комплексный анализ данных показателей. Один из самых распространенных и вполне доступных методов для измерения агрегации - это оценка скорости эритроцитной седиментации. Однако традиционный вариант этого теста малоинформативен, поскольку в нем не учитываются реологические характеристики.

Методы измерения

Согласно исследованиям реологических кровяных характеристик и факторов, которые на них влияют, можно заключить, что на оценку реологических свойств крови влияет агрегационное состояние. В наше время исследователи уделяют больше внимания на изучение микрореологических свойств этой жидкости, однако и вискозиметрия также актуальности не утратила. Основные методы для измерения свойств крови можно условно разделить на две группы: с полем напряжений и деформаций однородным - конусплоскость, дисковые, цилиндрические и прочие реометры, имеющие различную геометрию рабочих частей; с полем деформаций и напряжений относительно неоднородным - по регистрационному принципу акустических, электрических, механических колебаний, приборы, которые работают по методу Стокса, капиллярные вискозиметры. Так измеряются реологические свойства крови, плазмы и сыворотки.

Два типа вискозиметров

Самое большое распространение сейчас имеют два типа и капиллярные. Также применяются вискозиметры, внутренний цилиндр которых плавает в жидкости, которая испытывается. Сейчас активно занимаются различными модификациями ротационных реометров.

Заключение

Стоит также отметить, что заметный прогресс развития реологической техники как раз и позволяет изучать биохимические и биофизические свойства крови, чтобы управлять микрорегуляцией при метаболических и гемодинамических расстройствах. Тем не менее актуальна на данный момент разработка методов для анализа гемореологии, которые бы объективно отражали агрегационные и реологические свойства ньютоновской жидкости.