Эпохальное и давно ожидаемое событие для всей гастроэнтерологической общественности произошло в 2005 году – Нобелевская премия по физиологии и медицине присуждена двум австралийским врачам – гастроэнтерологу Бэрри Маршаллу и патоморфологу Робину Уоррену – за открытие Helicobacter pylori и ее роли при гастрите и язвенной болезни.

А.И. Головченко, д.м.н.

В мировых научных кругах так и не сформировалось единое мнение по поводу этого микроорганизма: одни недооценивают роль H. pylori в развитии патологических процессов, другие ее преувеличивают. В любом случае значение открытия Уоррена и Маршалла трудно переоценить: оно потребовало пересмотра традиционных взглядов на возникновение, развитие и терапию весьма широкого круга заболеваний, а также существенно обогатило собственно бактериологическую методологию.

С момента открытия микроорганизма появились принципиально новые подходы к лечению гастрита и язвенной болезни, которые обеспечили потрясающие результаты, но с течением лет все больше ранее нерешенных и вновь возникших вопросов предстает перед исследователями и практическими специалистами. Изучение особенностей Helicobacter pylori и модификация схем терапии в ответ на изменения микроорганизма продолжаются.

Украинские врачи, не только гастроэнтерологи, терапевты, но и представители других специальностей, принявшие участие в научно-практическом симпозиуме «Новейшие перспективные технологии диагностики и контроля лечения заболеваний органов пищеварения», который проходил в Виннице 22-23 марта, проявляют большой интерес к современным методикам терапии при патологии желудочно-кишечного тракта. Именно поэтому высокую оценку аудитории получил доклад начальника клиники гастроэнтерологии Военно-медицинского центра воздушных сил Вооруженных сил Украины, доктора медицинских наук Александра Ивановича Головченко о применении альтернативных схем эрадикационной терапии.

– Согласно международным нормам, указанным в Маастрихтском консенсусе (Рим, 21-22 ноября 2000 года), показания к эрадикации Helicobacter pylori подразделяются на абсолютные и относительные. Среди абсолютных показаний – дуоденальная язва желудка или двенадцатиперстной кишки (активная, неактивная), MALT-лимфома, атрофический гастрит, состояние после резекции желудка по поводу рака, первая линия родства с больными раком желудка, желание пациента (после консультации с врачом). К относительным показаниям относятся функциональная диспепсия, гастроэзофагеальная рефлюксная болезнь и лечение нестероидными противовоспалительными препаратами. Основные направления Маастрихтского консенсуса-III (2005) сформулированы в следующих тезисах.

  • Кого лечить?
  • Как выявлять и устранять Helicobacter pylori?
  • Профилактика рака желудка путем эрадикации Helicobacter pylori.

Инфицированность людей H. pylori в настящее время очень велика. По данным некоторых авторов, она достигает 80%. Однако частота хеликобактерассоциированных заболеваний варьирует в зависимости от страны (чем ниже экономический уровень страны, тем чаще отмечается хеликобактериоз), возраста больного (наиболее часто заражаются H. pylori в возрасте 18-23 лет в развитых странах и 5-10 лет в экономически неблагоприятных странах). Передача Helicobacter pylori происходит в основном от человека к человеку орально-оральным и фекально-оральным путем. Наиболее часто этот микроорганизм передается внутри семьи через предметы гигиены, посуду, при поцелуях. В большинстве случаев колонизация желудочно-кишечного тракта микроорганизмом не приводит к развитию патологического процесса.

Ответ организма на Helicobacter pylori зависит от многих факторов: состояния иммунитета человека, состава слизи в желудке и двенадцатиперстной кишки, а также уменьшения количества рецепторов на поверхности желудка, способствующих адгезии микроорганизма и вирулентности штамма H. pylori (способности продуцировать вакуолизирующий токсин (VacA), а также цитотоксинассоциированный протеин (CagA), которые обусловливают быструю деструкцию эпителиальных клеток с разрушением субэпителиальных тканей и экстрацеллюлярного матрикса). Патологический процесс в желудке запускается в случаях нарушения гомеостаза защитных систем и агрессивных факторов. При этом появляются показания для назначения антихеликобактерной терапии, которая состоит из антимикробных препаратов и средств, снижающих кислотопродуцирующую функцию желудка.

Терапия первой линии включает ингибиторы протонной помпы (ИПП) 2 раза в сутки, кларитромицин – 500 мг 2 раза в сутки, если для региона характерна первичная резистентность к кларитромицину более 15-20% – применяется амоксициллин в дозе 1000 мг 2 раза в сутки либо схема с использованием ИПП, кларитромицина в таких же дозах и метронидазола в дозе 500 мг дважды в сутки. Длительность лечения составляет 14 дней.

Терапия второй линии состоит из ИПП – 2 раза в сутки, висмута субцитрата – 120 мг 4 раза в сутки или 240 мг 2 раза в сутки, метронидазола по 500 мг 2 раза в сутки и тетрациклина – 500 мг 4 раза в сутки.

Лечение третьей линии после двух курсов различной эрадикационной терапии предусматривает определение чувствительности к антибиотикам. Первичная резистентность к кларитромицину составляет 15-20% и зависит от популяции, географического положения, а также проведенных курсов эрадикационной терапии.

В клинической практике хорошо зарекомендовала себя методика эрадикации Helicobacter pylori с применением ИПП. Флемоксина Солютаб по одной таблетке 500 мг 4 раза в день через 15 мин после еды, Де-Нола по 1 таблетке 120 мг 3 раза в день за час до еды и перед сном. Длительность курса терапии составляет 7 дней.

Препараты висмута для лечения заболеваний пищеварительного тракта начали использовать в далекие времена. Еще за много сотен лет до открытия Helicobacter pylori лекари прописывали это вещество при боли в области желудка. Но, как показали современные исследования, антихеликобактерный эффект оказывают лишь коллоидные соли висмута, которые обладают однородностью со слизью, хорошо перемешиваются с ней, а за счет адгезивных свойств способны длительно фиксироваться на слизистой оболочке. Препараты висмута практически не всасываются в кровь и выделяются кишечником, окрашивая испражнения в темный цвет. Побочные эффекты при их применении сравнительно редки. Кроме способности к эрадикации Helicobacter pylori, субцитрат висмута позитивно влияет на восстановление соотношения между уровнями соматостатина и гастрина, улучшая процессы репарации и регенерации поврежденной слизистой оболочки желудка. В глобальном масштабе препараты висмута обладают уникальным свойством – к ним отсутствует резистентность штаммов Helicobacter pylori.

Формирование устойчивости Helicobacter pylori к антибактериальным препаратам создает большую угрозу для медицины. Основными причинами появления резистентных штаммов Helicobacter pylori являются неполноценные схемы антихеликобактерной терапии, нарушение больными режима приема препаратов. По мнению G. Tytgat, в настоящее время лишь меньшая часть пациентов с язвенной болезнью получает адекватную антихеликобактерную терапию. В связи с этим в ряде стран ведутся динамические наблюдения за ростом уровня резистентности H. pylori к антибактериальным препаратам, которые входят в схемы антихеликобактерной терапии на популяционном уровне, и предпринимаются адекватные меры для предотвращения этого роста. К этим мерам относится включение коллоидных препаратов висмута в современные схемы эрадикационной терапии.

В последние годы установлена еще одна особенность Helicobacter pylori – под влиянием неблагоприятных условий, в т. ч. и неадекватной антибактериальной терапии, переходить из вегетативной формы в кокковую. При этом микроорганизм редуцирует ферментативную активность, и его трудно обнаружить с помощью уреазных тестов.

Характеризуя осложнения, обусловленные альтернативными схемами антихеликобактерной терапии, можно отметить формирование дисбиотических изменений толстой кишки. Среди побочных эффектов – аллергические реакции, активация моторики кишечника и прямое токсическое действие препаратов на слизистую оболочку.

Резюмируя вышесказанное, следует отметить, что ни одна из приведенных выше схем лечения не обеспечивает 100% эрадикации Helicobacter pylori, что может быть объяснено различными факторами. Однако эффективность рекомендуемых схем терапии в настоящее время составляет не менее 80%. Основываясь на этом, врачам необходимо продолжать назначать эрадикационное лечение и контролировать его результаты у конкретных пациентов.

Подготовила Елена Семиног

Особые указания

Окрашивает кал в черный цвет.

Показания к применению

Язвенная болезнь желудка и двенадцатиперстной кишки в фазе обострения, в т.ч. ассоциированная с Helicobacter pylori. хронический гастрит и гастродуоденит в фазе обострения, в т.ч. ассоциированный с Helicobacter pylori. синдром раздраженного кишечника, протекающий преимущественно с симптомами диареи. функциональная диспепсия, не связанная с органическими заболеваниями ЖКТ.

Фармакологическое действие

Противоязвенное, гастропротективное
При pH 4 и ниже (желудочный сок) осаждаются нерастворимые оксихлорид и цитрат висмута, образуются хелатные соединения с белковым субстратом. они покрывают язвенную поверхность, защищают ее (этот полимергликопротеидный комплекс более эффективен, чем нормально выделяемая слизь) от воздействия кислоты, пепсина и желчи. Коагулирует белки и вызывает гибель Helicobacter pylori. При введении внутрь практически не всасывается и выделяется с фекалиями. Только незначительное количество висмута отщепляется от коллоидного комплекса, поступает в кровь, а затем выводится с мочой. Способствует заживлению пептических язв, восстановлению защитной функции и сохранению целостности барьера слизистой оболочки желудка, понижает частоту рецидивов язвы двенадцатиперстной кишки. Стимулирует синтез ПГE2, увеличивающего образование слизи и секрецию бикарбоната, улучшает количественные и качественные характеристики желудочной слизи и продукцию муцина. Приводит к накоплению эпидермального фактора роста в зоне дефекта. Снижает активность пепсина и пепсиногена. Покрывает язвенную поверхность белым пенистым налетом, сохраняющимся в течение нескольких часов. у пациентов, принявших препарат за 3 ч до операции, белый тонкий слой присутствует только на кратерах язв. При монотерапии Helicobacter pylori исчезает в 30% случаев, при комбинировании с метронидазолом или амоксициллином - в 90%. При длительном применении больших доз, особенно у пациентов с нарушением функции почек, возможно развитие обратимой энцефалопатии.

Передозировка

Симптомы: при частом приеме больших доз возможно развитие почечной недостаточности.Лечение: промывание желудка, назначение активированного угля и солевых слабительных, симптоматическая терапия. Пациентам с нарушением функции почек, сопровождающимся высоким уровнем висмута в плазме, вводят содержащие SH-группы комплексообразователи - димеркаптоянтарную и димеркаптопропансульфоновую кислоты. В случае тяжелой почечной недостаточности проводят гемодиализ.

Структурная формула

Русское название

Латинское название вещества Висмута трикалия дицитрат

Bismuthi trikalii dicitras (Bismuthi subcitras) (род. Bismuthi trikalii dicitratis (Bismuthi subcitratis))

Химическое название

Висмута (III) калия 2-гидрокси-1,2,3-пропантрикарбоксилат (соль 1:3:2)

Брутто-формула

C 12 H 10 BiK 3 O 14

Фармакологическая группа вещества Висмута трикалия дицитрат

Нозологическая классификация (МКБ-10)

Код CAS

57644-54-9

Фармакология

Фармакологическое действие - противоязвенное, гастропротективное .

При pH 4 и ниже (желудочный сок) осаждаются нерастворимые оксихлорид и цитрат висмута, образуются хелатные соединения с белковым субстратом; они покрывают язвенную поверхность, защищают ее (этот полимергликопротеидный комплекс более эффективен, чем нормально выделяемая слизь) от воздействия кислоты, пепсина и желчи. Коагулирует белки и вызывает гибель Helicobacter pylori . При введении внутрь практически не всасывается и выделяется с фекалиями. Только незначительное количество висмута отщепляется от коллоидного комплекса, поступает в кровь, а затем выводится с мочой. Способствует заживлению пептических язв, восстановлению защитной функции и сохранению целостности барьера слизистой оболочки желудка, понижает частоту рецидивов язвы двенадцатиперстной кишки. Стимулирует синтез ПГE 2 , увеличивающего образование слизи и секрецию бикарбоната, улучшает количественные и качественные характеристики желудочной слизи и продукцию муцина. Приводит к накоплению эпидермального фактора роста в зоне дефекта. Снижает активность пепсина и пепсиногена. Покрывает язвенную поверхность белым пенистым налетом, сохраняющимся в течение нескольких часов; у пациентов, принявших препарат за 3 ч до операции, белый тонкий слой присутствует только на кратерах язв. При монотерапии Helicobacter pylori исчезает в 30% случаев, при комбинировании с метронидазолом или амоксициллином — в 90%. При длительном применении больших доз, особенно у пациентов с нарушением функции почек, возможно развитие обратимой энцефалопатии.

Применение вещества Висмута трикалия дицитрат

Язвенная болезнь желудка и двенадцатиперстной кишки в фазе обострения, в т.ч. ассоциированная с Helicobacter pylori; хронический гастрит и гастродуоденит в фазе обострения, в т.ч. ассоциированный с Helicobacter pylori; синдром раздраженного кишечника, протекающий преимущественно с симптомами диареи; функциональная диспепсия, не связанная с органическими заболеваниями ЖКТ .

Противопоказания

Гиперчувствительность, выраженное нарушение функций почек, беременность, период грудного вскармливания.

Применение при беременности и кормлении грудью

Противопоказано при беременности.

На время лечения следует прекратить грудное вскармливание.

Побочные действия вещества Висмута трикалия дицитрат

Со стороны органов ЖКТ : тошнота, рвота, учащение стула, запор.

Аллергические реакции: кожная сыпь, зуд.

Прочие: при длительном применении в высоких дозах — энцефалопатия, связанная с накоплением висмута в ЦНС .

Взаимодействие

Уменьшает всасывание тетрациклина. Препараты, содержащие висмут (в т.ч. Викалин, Викаир), повышают риск развития системных побочных эффектов (увеличивается концентрация висмута в крови).

Передозировка

Симптомы: при частом приеме больших доз возможно развитие почечной недостаточности.

Лечение: промывание желудка, назначение активированного угля и солевых слабительных, симптоматическая терапия. Пациентам с нарушением функции почек, сопровождающимся высоким уровнем висмута в плазме, вводят содержащие SH-группы комплексообразователи — димеркаптоянтарную и димеркаптопропансульфоновую кислоты. В случае тяжелой почечной недостаточности проводят гемодиализ.

Пути введения

Внутрь.

Меры предосторожности вещества Висмута трикалия дицитрат

Не рекомендуется длительное использование больших доз. В течение 30 мин до и после приема необходимо воздержаться от напитков (в т.ч. молока, фруктов и фруктовых соков), твердой пищи, антацидных средств. Во время терапии не следует употреблять алкоголь.

Особые указания

Окрашивает кал в черный цвет.

Взаимодействия с другими действующими веществами

Торговые названия

Название Значение Индекса Вышковского ®
0.2852
0.0589

Висмут (Bi) — относительно редкий элемент, обладающий не только металлическими свойствами, но и характеристиками, близкими к полупроводникам и изоляторам, поэтому иногда классифицируется как полуметалл или металлоид.

Bi (III) легко гидролизуется в водных растворах и имеет высокое сродство к кислороду, азоту и серосодержащими лигандам, Bi (V) является мощным окислителем в водном растворе и неустойчив в биологических системах .

Препараты висмута

Соединения висмута вошли в медицинскую практику со времен средневековья, а первый научный доклад о содержащем висмут препарате для лечения диспепсии был сделан в 1786 г. . На сегодняшний день самое широкое применение соединения висмута нашли в гастроэнтерологии, а наиболее часто используемыми среди них являются висмута субсалицилат и коллоидный субцитрат (висмута трикалия дицитрат, ВТД) (табл. 1).

Висмута субсалицилат во многих странах используется в качестве безрецептурного препарата для быстрого купирования изжоги, тошноты и диареи.

Коллоидный висмута субцитрат нашел применение в первую очередь для лечения заболеваний, ассоциированных с хеликобактерной инфекцией, а также как пленкообразующий гастропротектор. Именно этот препарат представляет наибольший интерес с точки зрения фармакологических свойств и клинического применения.

Перспективным представляется применение радионуклидов висмута (например, 213 Bi) для диагностики и лечения различных опухолей — лимфом, лейкемии .

Висмута трикалия дицитрат

Взаимодействие со слизистой

На поверхности слизистой ВТД образует гликопротеин-висмутовые комплексы, по сути представляющие собой диффузионный барьер для HCl, который усиливается за счет дополнительного повышения вязкости пристеночной слизи . Этот процесс является рН-зависимым и ослабевает по мере повышения рН . Если при нейтральном рН ВТД преимущественно находится в коллоидном состоянии, формируя структуры 6- и 12- , то при рН < 5 он быстро образует трехмерные полимерные преципитаты окси-хлорида и цитрата висмута, оптимум образования которых наблюдается при рН ≈ 3,5 .

Распределение ВТД по слизистой желудка является неравномерным — значительная часть его обнаруживается в области дна язвы, а остальная распределяется по неповрежденной слизистой . В области поврежденной слизистой преципитаты имеют значительно большие размеры и формируют своеобразную «полимерную пленку», что, как предполагается, обеспечивает более выраженный защитный эффект . Считается, что благодаря отрицательному заряду микропреципитаты висмута особенно активно осаждаются на пораженных участках слизистой, имеющих из-за большого количества белков положительный заряд. Образующиеся микропреципитаты могут проникать в микроворсинки и путем эндоцитоза попадать в клетки эпителия .

Одновременно под влиянием ВТД происходит перераспределение продукции муцинов — уровень кислых муцинов, повышенный в пораженном эпителии, снижается при одновременном возрастании количества нейтральных муцинов .

Влияние на активность пепсина

Исследования in vitro показали, что ВТД присуща антипепсиновая активность. В концентрации 25 и 50 г/л препарат (после преинкубации с желудочным соком при рН = 4) ингибировал протеолитическую активность пепсина (при рН = 2) соответственно на 29% и 39% . У пациентов с язвой двенадцатиперстной кишки ВТД (120 мг 4 раза/день) уменьшал как базальную, так и стимулированную продукцию пепсина более чем на 30% .

Предполагается, что эти эффекты опосредованы как непосредственной инактивацией пепсина вследствие образования комплексов с висмутом, так и снижением активности главных клеток .

Связывание желчных кислот

Феномен связывания желчных кислот ВТД был описан после исследований in vitro , и до настоящего времени его клиническая значимость до конца не определена. Тем не менее, при рН = 2 ВТД связывает различные желчные кислоты, особенно гликохенодеоксихолевую (до 50%), резко теряя эту активность при рН = 4 .

Влияние на продукцию простагландинов и бикарбоната

Этот компонент механизма действия рассматривается как важный в реализации гастропротекторного действия ВТД и ускорении заживления язвенного дефекта. Дозозависимое увеличение продукции простагландина Е 2 было показано в экспериментальных и клинических исследованиях . Так, у больных с язвенным поражением слизистой желудка после трех недель терапии ВТД концентрация простагландина Е 2 в слизистой антрального отдела желудка увеличивалась на 54%, а в слизистой двенадцатиперстной кишки на 47% .

Одновременно с секрецией простагландинов возрастает и простагландинзависимая продукция бикарбоната, что увеличивает буферную емкость слизи . Этот эффект значительно снижается под влиянием нестероидных противовоспалительных средств.

Влияние на ультраструктуру слизистой

В исследовании M. G. Moshal и соавт. (1979) у больных с язвой двенадцатиперстной кишки применение ВТД в течение шести недель приводило к эпителизации дефекта с формированием нормального эпителия без изменения структуры микроворсинок (в отличие от циметидина) . Предполагается, что наряду с действием классически описываемых фармакологических эффектов висмута, обеспечивающих защиту и восстановление слизистой, ускорению репарации эпителия в зоне язвенного дефекта способствует предохранение висмутом эпидермального фактора роста от гидролитического разрушения .

Наряду с этим обсуждается способность ВТД стимулировать мембранный Са 2+ -чувствительный рецептор (CaSR), активируемый в норме внеклеточным Са 2+ и обеспечивающий повышение внутриклеточного Са 2+ , MAP-киназной активности и, в итоге, пролиферацию эпителиальных клеток слизистой желудка .

В экспериментальных исследованиях на слизистой толстой кишки мышей показана способность ионов Bi (III) за счет антагонизма с ионами Fe (III) подавлять активность неамидированного гастрина и, таким образом, возможность снижения избыточной гастрин-обусловленной пролиферации клеток .

Антихеликобактерная активность

Бактерицидное действие ВТД имеет очень важное значение. Под действием ионов висмута H. pylori теряет способность к адгезии, снижается подвижность микроорганизма, происходит вакуолизация и фрагментация клеточной стенки, подавление ферментных системы бактерий, т. е. достигается бактерицидный эффект (в отношении как вегетативных, так и кокковых форм H. pylori ) . Этот эффект при монотерапии ВТД хотя и незначителен (находится в пределах 14-40%), но не подвержен развитию резистентности и резко потенцируется при одновременном назначении с антибиотиками.

Висмут проникает в H. pylori , преимущественно локализуясь в области клеточной стенки микроорганизма. Он активно взаимодействует с нуклеотидами и аминокислотами, пептидами и белками H. pylori . Хотя молекулярные механизмы антихеликобактерного действия соединений висмута изучены не полностью, ясно, что основными мишенями в микроорганизме все же являются белковые молекулы (в том числе ферменты). Экспрессия примерно восьми белков подвергается up- или down- регуляции при действии ионов висмута .

J. R. Lambert и Р. Midolo сформулировали основные молекулярные механизмы антихеликобактерного действия препаратов висмута , впоследствии дополненные другими исследователями :

1) блокада адгезии H. pylori к поверхности эпителиальных клеток;
2) подавление различных ферментов, продуцируемых H. pylori (уреаза, каталаза, липаза/фосфолипаза, алкилгидропероксидредуктаза и др.), и трансляционного фактора (Ef-Tu);
3) прямое взаимодействие с белками теплового шока (HspA, HspB), нейтрофил-активирующим белком (NapA), нарушение структуры и функции других белков;
4) нарушение синтеза АТФ и других макроэргов;
5) нарушение синтеза, структуры и функции клеточной стенки и функции мембраны;
6) индукция свободнорадикальных процессов.

Одним из механизмов антибактериального действия ионов висмута является их взаимодействие с комплексом клеточной стенки/гликокаликса, имеющимся у некоторых микроорганизмов (в том числе у H. pylori ), с вытеснением двухвалентных катионов Mg 2+ и Ca 2+ , необходимых для построения полисахаридных цепочек. При этом происходит локальное ослабление участков гликокаликса и выпирание клеточной стенки/мембраны через образовавшиеся «окна», что приводит к нарушению функционирования микроорганизма и может активировать аутолитические процессы, приводящие к его гибели .

Предполагается, что попадание висмута в H. pylori опосредуется через железотранспортные пути, а проникнув, он взаимодействует с участками связывания Zn (II), Ni (II) и Fe (III) белков и ферментов, нарушая их функцию . Например, связывание ионов висмута с малыми цитоплазматическими белками Hpn и Hpnl приводит к резкому нарушению их детоксицирующей и аккумулирующей функции «хранилища» для ионов Ni .

H. pylori характеризуется необычной версией шаперонина GroES (т. е. HpGroES), который обладает уникальным C-концом, богатым гистидином, цистеином и имеющим три металл-связывающих остатка (с Zn (II)), что обеспечивает сворачивание полипептидных цепей с формированием четвертичной структуры белка. Висмут-содержащие препараты прочно прикрепляются на этом сайте, вытесняя связанный цинк и, следовательно, вызывая резкое нарушение функции шаперонина HpGroES .

Препараты висмута, проникая в H. pylori , способны индуцировать мощный окислительный стресс в микроорганизме, что приводит к торможению деятельности многих ферментов в целом. Потенцируется прооксидантное действие подавлением активности тиоредоксина и алкилгидропероксидредуктазы (TsaA) микроорганизма .

Ингибирование таких важных для микроорганизма ферментов, как протеаза и уреаза, является доказанным фактом в развитии антихеликобактерного эффекта ВТД . В минимальной ингибирующей концентрации ВТД подавляет общую протеазную активность микроорганизма примерно на 87% .

Большое внимание привлекает взаимодействие висмута с ферментами цикла трикарбоновых кислот микроорганизма (фумаратредуктазы, фумаразы), обеспечивающего образование ряда биохимических прекурсоров (α-кетоглутарат, сукцинил-КоА, оксалоацетат) и работающего как источник образования АТФ. В результате уменьшается продукция макроэргов и подавляются многие энергозависимые процессы (в том числе репаративные, двигательные), что отражается, например, на скорости колонизации микроорганизмом различных отделов желудка . Потенцируется этот эффект блокадой локализованного в микробной стенке/мембране дитиольного фермента Na + /K + -АТФазы, с которым ионы Bi образуют стабильный комплекс .

В качестве еще одной ферментной мишени препаратов висмута рассматривается алкогольдегидрогеназа, участвующая в продукции ацетальдегида, который, секретируясь микроорганизмом, оказывает подавляющее действие на локальные защитные факторы слизистой, ингибируя секрецию белка и нарушая связывание пиридоксальфосфата с зависимыми ферментами .

Важное значение имеет также подавление висмутом активности фосфолипаз С и А 2 H. pylori . В качестве новых мишеней для антихеликобактерного действия ВТД обсуждаются S-аденозилметионинсинтаза, альдолаза, фруктозобисфосфат и протеин S6 30S-субъединицы рибосомы .

Фармакокинетика ВТД

После перорального приема ВТД концентрация висмута в слизи желудка и слизистой сохраняется в пределах трех часов, после чего резко падает вследствие нормального обновления слизи . Несмотря на то, что небольшая часть микропреципитатов ВТД может проникать в микроворсинки и путем эндоцитоза попадать в клетки эпителия, точные механизмы транспорта висмута в системный кровоток до настоящего времени неизвестны. Однако очевидно, что этот процесс происходит преимущественно в верхнем отделе тонкой кишки .

Биодоступность препаратов висмута низкая и у ВТД составляет 0,2-0,5% от введенной дозы . Н 2 -гистаминоблокаторы и ингибиторы протонной помпы могут увеличивать этот показатель . После попадания в кровь препарат больше чем на 90% связывается с белками плазмы.

Измерение концентрации висмута в крови и моче после курсового применения ВТД в дозе 360 мг/сут в течение 4-6 недель показало большую вариабельность этого показателя. Так, концентрация висмута в крови варьировала от 9,3 до 17,7 мкг/л и выходила на плато примерно к 4-й неделе применения препарата . В отдельных исследованиях были зафиксированы более высокие уровни препарата в крови (33-51 мкг/л), однако это не сопровождалось развитием побочных эффектов . Концентрация висмута в крови, как и площадь под фармакокинетической кривой, выше в том случае, если препарат принимается утром, по сравнению с ранним вечерним приемом .

В исследованиях на животных показано, что преимущественное накопление препарата происходит в почках и в значительно меньшей концентрации он обнаруживается в легких, печени, мозге, сердце и скелетной мускулатуре .

Особенности метаболизма и элиминации висмута изучены недостаточно. Период полувыведения висмута из крови и мочи у пациентов с интоксикацией составляет соответственно 5,2 и 4,5 дня . У здоровых добровольцев и пациентов с гастритом клиренс составляет примерно 22-102 мл/мин (медиана 55 мл/мин) и Т1/2 около 5 дней (Т1/2 β до 21 дня), что свидетельствует о тканевом депонировании препарата и его медленной мобилизации оттуда . На выведение препарата оказывает влияние функция почек, и при ее ухудшении почечный клиренс препарата может снижаться. Некоторые фармакокинетические показатели ВТД приведены в табл. 2.

Клиническая эффективность ВТД

ВТД является важным компонентом клинических схем антихеликобактерной терапии либо в составе традиционной квадротерапии, либо в качестве дополнительного компонента тройной терапии первой линии, что дает прирост эффективности эрадикации на 15-20% . В первую очередь, это обусловлено способностью ВТД преодолевать резистентность H. pylori к антибиотикам (особенно к кларитромицину), а не собственной бактерицидной активностью препарата висмута . Интерес представляет также включение ВТД в схемы последовательной антихеликобактерной терапии .

Безопасность ВТД

Несмотря на статус тяжелого металла, висмут и его соединения считаются нетоксичными, в отличие от расположенных рядом в периодической таблице мышьяка, сурьмы, свинца и олова. Нетоксичность соединений висмута объясняется преимущественно за счет их нерастворимости в нейтральных водных растворах и биологических жидкостях и крайне низкой биодоступностью. Большинство соединений висмута являются даже менее токсичными, чем хлорид натрия .

A. C. Ford и соавт. в рамках мета-анализа, проведенного по публикациям баз MEDLINE и EMBASE, включающего 35 рандомизированных контролируемых исследований и 4763 пациента, пришли к выводу, что терапия язвенной болезни желудка с использованием препаратов висмута безопасна и хорошо переносится. Наиболее часто встречающимся побочным эффектом является потемнение стула за счет образования сульфида висмута .

У очень небольшой части больных может встречаться легкое кратковременное повышение уровня трансаминаз, однако оно исчезает после окончания курса терапии. Высокие дозы ВТД, применяемые длительное время, теоретически могут быть причиной развития энцефалопатии, однако зафиксировано очень небольшое число таких поражений центральной нервной системы. Наиболее манифестное, но обратимое проявление висмутовой энцефалопатии описано у мужчины, получившего два 28-дневных курса ВТД с приемом 600 мг препарата 4 раза в день и принимавшего периодически по 240 мг/сут в течение двух лет .

Заключение

Уникальность ВТД состоит в том, что он сочетает в себе свойства гастропротекторного и антибактериального препарата. Его многокомпонентный механизм действия обеспечивает защиту слизистой от воздействия различных повреждающих факторов, а антихеликобактерная активность позволяет преодолевать устойчивость H. pylori к антибиотикам, повышая эффективность фармакотерапии. В общем виде совокупность отдельных компонентов механизма действия препарата представлена на рис.

Новые направления создания препаратов висмута для лечения гастроэнтерологических заболеваний включают разработку висмут-содержащих наноструктур (bismuth-containing nanoparticles, Bi NPs). Так, созданный препарат нанотрубок висмута субкарбоната обладает мощным действием в отношении H. pylori (50% ингибирование в концентрации 10 мкг/мл) , а Bi NPs потенциально активен против грамотрицательных микроорганизмов, включая P. aeruginosa .

Наночастицы висмута в МИК 0,5 ммоль/л способны полностью подавлять формирование биопленки S. mutans , что сравнимо с эффектом применения хлоргексидина . В работе тех же авторов водный коллоид наночастиц Bi 2 O 3 со средним размером 77 нм эффективно угнетал рост и образование биопленок C. albicans , не проявляя цитотоксичности . Делаются попытки синтеза висмут-фторхинолоновых комплексов, активных в отношении фторхинолон-резистентых штаммов микроорганизмов .

Исчерпывающие сведения по современным направлениям медицинской химии соединений висмута можно найти в обзоре J. A. Salvador и соавт. .

Литература

  1. Yang N., Sun H. Biological chemistry of antimony and bismuth / Biological chemistry of arsenic, antimony and bismuth/Sun H. (Ed.). Singapore: John Wiley & Sons Ltd., 2011. 400 р.
  2. Li W., Jin L., Zhu N. et al. Structure of colloidal bismuth subcitrate (CBS) in dilute HCl: unique assembly of bismuth citrate dinuclear units (2-) // J Am Chem Soc. 2003. Vol. 125, № 4. P. 2408-12409.
  3. Andrews P. C., Deacon G. B., Forsyth C. M. et al. Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate // Angew Chem Int Ed Engl. 2006. Vol. 45, № 34. P. 5638-5642.
  4. Mendis A. H. W., Marshall B. J. Helicobacter pylori and bismuth / Biological chemistry of arsenic, antimony and bismuth / Sun H (Ed.). Singapore: John Wiley & Sons Ltd., 2011. 400 р.
  5. Morgenstern A., Bruchertseifer F., Apostolidis C. Bismuth-213 and Actinium-225 — generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes // Current Radiopharmaceuticals. 2012. Vol. 5, № 3. P. 221-227.
  6. Lee S. P. A potential mechanism of action of colloidal bismuth subcitrate; diffusion barrier to hydrochloric acid // Scand J Gastroenterol. 1982. Vol. 17, Suppl. 80. P. 17-21.
  7. Turner N. C., Martin G. P., Marriott C. The influence of native porcine gastric mucus gel on hydrogen ion diffusion: the effect of potentially ulcerogenic agents // J Pharm Pharmacol. 1985. Vol. 37, № 11. P. 776-780.
  8. Tasman-Jones C., Maher C., Thomsen L. et al. Mucosal defences and gastroduodenal disease // Digestion. 1987. Vol. 37, Suppl. 2. P. 1-7.
  9. Williams D. R. Analytical and computer simulation studies of a colloidal bismuth citrate system used as an ulcer treatment // J Inorg Nucl Chem. 1977. Vol. 39, № 4. P. 711-714.
  10. Soutar R. L, Coghill S. B. Interaction of tripotassium dicitrato bismuthate with macrophages in the rat and in vitro // Gastroenterology. 1986. Vol. 91, № 1. P. 84-93.
  11. The ultrastructural localisation of De-Nol (colloidal tripotassium dicitrato-bismuthate — TDB) in the upper gastrointestinal tract of man and rodents following oral and instrumental administration // J Pathol. 1983. Vol. 139, № 2. P. 105-114.
  12. Hollanders D., Morrissey S. M., Mehta J. Mucus secretion in gastric ulcer patients treated with tripotassium dicitrato bismuthate (De-Nol) // Br J Clin Pract. 1983. Vol. 37, № 3. P. 112-114.
  13. Roberts N. B., Taylor W. H., Westcott C. Effect of cyclo-alkyl lactamimides upon amylase, lipase, trypsin and chymotrypsin // J Pharm Pharmacol. 1982. Vol. 34, № 6. P. 397-400.
  14. Baron J. H., Barr J., Batten J. et al. Acid, pepsin, and mucus secretion in patients with gastric and duodenal ulcer before and after colloidal bismuth subcitrate (De-Nol) // Gut. 1986. Vol. 27, № 5. P. 486-490.
  15. Wieriks J., Hespe W., Jaitly K. D. et al. Pharmacological properties of colloidal bismuth subcitrate (CBS, De-Nol) // Scand J Gastroenterol. 1982. Vol. 17, Suppl.80. P. 11-16.
  16. Stiel D., Murray D. J., Peters T. J. Uptake and subcellular localisation of bismuth in the gastrointestinal mucosa of rats after short term administration of colloidal bismuth subcitrate // Gut. 1985. Vol. 26, № 4. P. 364-368.
  17. Hall D. W.R., van de Hoven W. E. Protective properties of colloidal bismuth subcitrate on the gastric mucosa // Scand J Gastroenterol. 1986. Vol. 21, Suppl. 122. P. 11-13.
  18. Estela R., Feller A., Backhouse C. et al. Effects of colloidal bismuth subcitrate and aluminum hydroxide on gastric and duodenal levels of prostaglandin E2 // Rev Med Chil. 1984. Vol. 112, № 10. P. 975-981.
  19. Konturek S. J., Bilski J., Kwiecien N. et al. De-Nol stimulates gastric and duodenal alkaline secretion through prostaglandin dependent mechanism // Gut. 1987. Vol. 28, № 12. P. 1557-1563.
  20. Crampton J. R., Gibbons L. C., Rees W. D. Effect of certain ulcer-healing agents on amphibian gastroduodenal bicarbonate secretion // Scand J Gastroenterol. 1986. Vol. 21, Suppl. 125. P. 113-118.
  21. Moshal M. G., Gregory M. A., Pillay C., Spitaels J. M. Does the duodenal cell ever return to normal? A comparison between treatment with cimetidine and denol // Scand J Gastroenterol. 1979. Vol. 14, Suppl. 54. P. 48-51.
  22. Gilster J., Bacon K., Marlink K. et al. Bismuth subsalicylate increases intracellular Ca2+, MAP-kinase activity, and cell proliferation in normal human gastric mucous epithelial cells // Dig Dis Sci. 2004. Vol. 49, № 3. P. 370-378.
  23. Kovac S., Loh S. W., Lachal S. et al. Bismuth ions inhibit the biological activity of non-amidated gastrins in vivo // Biochem Pharmacol. 2012. Vol. 83, № 4. P. 524-530.
  24. Beil W., Bierbaum S., Sewing K. F. Studies on the mechanism of action of colloidal bismuth subcitrate. I. Interaction with sulfhydryls // Pharmacology. 1993. Vol. 47, № 2. P. 135-140.
  25. Wagner S., Beil W., Mai U. E. et al. Interaction between Helicobacter pylori and human gastric epithelial cells in culture: effect of antiulcer drugs // Pharmacology. 1994. Vol. 49, № 4. P. 226-237.
  26. Ge R. G., Sun H. Z. Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs // Acc Chem Res. 2007. Vol. 40, № 4. P. 267-274.
  27. Ge R. G., Sun X, Gu Q. et al. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori // J Biol Inorg Chem. 2007. Vol. 12, № 6. P. 831-842.
  28. Lambert J. R., Midolo P. The actions of bismuth in the treatment of Helicobacter pylori infection // Aliment Pharmacol Ther. 1997. Vol. 11, Suppl. 1. P. 27-33.
  29. Stratton C. W., Warner R. R., Coudron P. E., Lilly N. A. Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: ultrastructural evidence for a mechanism of action for bismuth salts // J Antimicrob Chemother. 1999. Vol. 43, № 5. P. 659-666.
  30. Tsang C. N., Ho K. S., Sun H., Chan W. T. Tracking Bismuth anti-ulcer drug uptake in single Helicobacter pylori cells // J Am Chem Soc. 2011. Vol. 133, № 19. P. 7355-7357.
  31. Xia W., Li H., Sun H. Functional disruption of HypB, a GTPase of Helicobacter pylori, by bismuth // Chem Commun (Camb). 2014. Vol. 50, № 13. P. 1611-1614.
  32. Li H., Sun H. Recent advances in bioinorganic chemistry of bismuth // Curr Opin Chem Biol. 2012. Vol. 16, № 1-2. P. 74-83.
  33. Cun S, Sun H. A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin // Proc Natl Acad Sci USA. 2010. Vol. 107, № 11. P. 4943-4948.
  34. Baer W., Koopmann H., Wagner S. Effects of substances inhibiting or uncoupling respiratory-chain phosphorylation of Helicobacter pylori // Zentralbl Bakteriol. 1993. Vol. 280, № 1. P. 253-258.
  35. Pitson S. M., Mendz G. L., Srinivasan S., Hazell S. L. The tricarboxylic acid cycle of Helicobacter pylori // Eur J Biochem. 1999. Vol. 260, № 1. P. 258-267.
  36. Jin L., Szeto K. Y., Zhang L. et al. Inhibition of alcohol dehydrogenase by bismuth // J Inorg Biochem. 2004. Vol. 98, № 8. P. 1331-1337.
  37. Ottlecz A., Romero J. J., Lichtenberger L. M. Effect of ranitidine bismuth citrate on the phospholipase A2 activity of Naja naja venom and Helicobacter pylori: a biochemical analysis // Aliment Pharmacol Ther. 1999. Vol. 13, № 7. P. 875-881.
  38. Tsang C. N., Bianga J., Sun H. et al. Probing of bismuth antiulcer drug targets in H. pylori by laser ablation-inductively coupled plasma mass spectrometry // Metallomics. 2012. Vol. 4, № 3. 277-283.
  39. Lambert J. R., Yeomans N. D. Campylobacter pylori — gastroduodenal pathogen or opportunistic bystander? // Aust N Z J Med. 1988. Vol. 18, № 4. P. 555-556.
  40. Coghill S. B., Hopwood D., McPherson S., Hislop S. The ultrastructural localisation of De-Nol (colloidal tripotassium dicitrato-bismuthate-TDB) in the upper gastrointestinal tract of man and rodents following oral and instrumental administration // J Pathol. 1983. Vol. 139, № 2. P. 105-114.
  41. Treiber G., Gladziwa U., Ittel T. H. et al. Tripotassium dicitrato bismuthate: absorption and urinary excretion of bismuth in patients with normal and impaired renal function // Aliment Pharmacol Ther. 1991. Vol. 5, № 5. 491-502.
  42. Phillips R. H., Whitehead M. W., Lacey S. et al. Solubility, absorption, and anti-Helicobacter pylori activity of bismuth subnitrate and colloidal bismuth subcitrate: In vitro data do not predict In vivo efficacy // Helicobacter. 2000. Vol. 5, № 3. P. 176-182.
  43. Nwokolo C. U., Prewett E. J., Sawyerr A. M. et al. The effect of histamine H2-receptor blockade on bismuth absorption from three ulcer-healing compounds // Gastroenterology. 1991. Vol. 101, № 4. P. 889-894.
  44. Lee S. P. Studies on the absorption and excretion of tripotassium dicitrato-bismuthate in man // Res Commun Chem Pathol Pharmacol. 1981. Vol. 34, № 2. 359-364.
  45. Hamilton I., Worsley B. W., O’Connor H. J., Axon A. T. R. Effects of tripotassium dicitrato bismuthate (TDB) tablets or cimetidine in the treatment of duodenal ulcer // Gut. 1983. Vol. 24, № 12. P. 1148-1151.
  46. Dekker W., Dal Monte P. R., Bianchi Porro G. et al. An international multi-clinic study comparing the therapeutic efficacy of colloidal bismuth subcitrate coated tablets with chewing tablets in the treatment of duodenal ulceration // Scand J Gastroenterol. 1986. Vol. 21, Suppl.122. P. 46-50.
  47. Nwokolo C. U., Gavey C. J., Smith J. T. et al. The absorption of bismuth from oral doses of tripotassium dicitrato bismuthate // Aliment Pharmacol Ther. 1989. Vol. 3, № 1. P. 29-39.
  48. Wieriks J., Hespe W., Jaitly K. et al. Pharmacological properties of colloidal bismuth subcitrate (CBS, DE-NOL) // Scand J Gastroenterol. 1982. Vol. 17, Suppl.80. P. 11-16.
  49. Allain P., Chaleil D., Emile J. L’elevation des concentrations de bismuth dans les tissus des malades intoxiques // Therapie. 1980. Vol. 35, № 3. P. 303-304.
  50. Froomes P. R., Wan A. T., Keech A. C. et al. Absorption and eliminationof bismuth from oral doses of tripotassium dicitratobismuthate // Eur J Clin Pharmacol. 1989. Vol. 37, № 5. P. 533-536.
  51. Ивашкин В. Т., Маев И. В., Лапина Т. Л. и др. Рекомендации Российской гастроэнтерологической ассоциации по диагностике и лечению инфекции Helicobacter pylori у взрослых // Рос. журн. гастроэнтеролии гепатологии, колопроктологии. 2012. № 1. C. 87-89.
  52. Стандарты диагностики и лечения кислотозависимых и ассоциированных с Helicobacter pylori заболеваний (Пятое московское соглашение) // Эксперимент. клин. гастроэнтерол. 2013. № 5. С. 3-11.
  53. Маев И. В., Самсонов А. А., Коровина Т. И. и др. Висмута трикалия дицитрат повышает эффективность антихеликобактерной терапии первой линии // Эксперимент. клин. гастроэнтерол. 2012. № 8. C. 92-97.
  54. Williamson R., Pipkin G. A. Does bismuth prevent antimicrobial resistance of Helicobacter pylori?/Helicobacter pylori. Basic Mechanisms to Clinical Cure 1998/Ed. by R. H. Hunt, G. N. J. Tytgat. Dordrecht; Boston; London: Kluwer Acad. Publ., 1998. P. 416-425.
  55. Yoon J. H., Baik G. H., Kim Y. S. et al. Comparison of the eradication rate between 1-nd 2-week bismuth-containing quadruple rescue therapies for Helicobacter pylori eradication // Gut Liver. 2012. Vol. 6, № 4. P. 434-439.
  56. Sun Q., Liang X., Zheng Q. et al. High efficacy of 14-ay triple therapy-based, bismuth-containing quadruple therapy for initial Helicobacter pylori eradication // Helicobacter. 2010. Vol. 15, № 3. P. 233-238.
  57. Uygun A., Ozel A. M., Sivri B. et al. Efficacy of a modified sequential therapy including bismuth subcitrate as first-line therapy to eradicate Helicobacter pylori in a Turkish population // Helicobacter. 2012. Vol. 17, № 6. P. 486-490.
  58. Ford A. C., Malfertheiner P., Giguere M. et al. Adverse events with bismuth salts for Helicobacter pylori eradication: systematic review and meta-analysis // World J Gastroenterol. 2008. Vol. 14, № 48. 7361-7370.
  59. Weller M. P. I. Neuropsychiatric symptoms following bismuth intoxication // Postgraduate Medical Journal. 1988. Vol. 64, № 750. P. 308-310.
  60. Chen R., So M. H., Yang J. et al. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate // Chem Commun. 2006. Vol. 21. P. 2265-2267.
  61. Pelgrift R. Y., Friedman A. J. Nanotechnology as a therapeutic tool to combat microbial resistance // Adv Drug Deliv Rev. 2013. Vol. 65, № 13-14. P. 1803-1815.
  62. Hernandez-Delgadillo R., Velasco-Arias D., Diaz D. et al. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm // Int J Nanomedicine. 2012. Vol. 7. P. 2109-2113.
  63. Hernandez-Delgadillo R., Velasco-Arias D., Martinez-Sanmiguel J. J. et al. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation // Int J Nanomedicine. 2013. Vol. 8. P. 1645-1652.
  64. Shaikh A. R., Giridhar R., Megraud F., Yadav M. R. Metalloantibiotics: synthesis, characterization and antimicrobial evaluation of bismuth-fluoroquinolone complexes against Helicobacter pylori. 2009. Acta Pharm. 59, 259-271.
  65. Salvador J. A., Figueiredo S. A., Pinto R. M., Silvestre S. M. Bismuth compounds in medicinal chemistry // Future Med Chem. 2012. Vol. 4, № 11. P. 1495-1523.

С. В. Оковитый 1 , доктор медицинских наук, профессор
Д. Ю. Ивкин, кандидат биологических наук