Алюминий-серебристо-белый металл, обладающий высокой электропроводностью и теплопроводностью. (Теплопроводность алюминия в 1,8 раз больше, чем у меди, и в 9 раз больше, чем у нержавеющей стали.) Он имеет невысокую плотность - приблизительно втрое меньше, чем у железа, меди и цинка. И все же это очень прочный металл.

Три электрона из внешней оболочки атома алюминия делокализованы по кристаллической решетке металлического алюминия. Эта решетка имеет грансцентрированную кубическую структуру, подобную решетке олова и золота (см. разд. 3.2). Поэтому алюминий обладает хорошей ковкостью.

Химические свойства

Алюминий образует соединения ионного и ковалентного типа. Он характеризуется высокой энергией ионизации (табл. 15.1). Плотность заряда (отношение заряда к радиусу) для иона очень велика по сравнению с катионами других металлов того же периода (см. табл. 15.2).

Рис. 15.2. Гидратированный ион алюминия.

Таблица 15.2. Отношение заряда к радиусу катионов

Поскольку ион имеет высокую плотность заряда, он обладает большой поляризующей способностью. Этим объясняется то, что изолированный ион обнаруживается лишь в очень немногих соединениях, например в безводном фториде алюминия и оксиде алюминия, причем даже эти соединения обнаруживают заметный ковалентный характер. В водном растворе ион поляризует молекулы воды, которые вследствие этого гидратируют катион (см. рис. 15.2). Эта гидратация характеризуется большой экзотермичностью:

Стандартный окислительно-восстановительный потенциал алюминия равен - 1,66 В:

Поэтому в электрохимическом ряду элементов алюминий расположен довольно высоко (см. разд. 10.5). Это заставляет предположить, что алюминий должен легко реагировать с кислородом и разбавленными минеральными кислотами. Однако, когда алюминий реагирует с кислородом, на его поверхности образуется тонкий непористый слой оксида. Этот слой предохраняет алюминий от дальнейшего взаимодействия с окружающей средой. Оксидный слой можно удалить с поверхности алюминия, натирая ее ртутью. После этого алюминий способен соединяться непосредственно с кислородом и другими неметаллами, например серой и азотом. Взаимодействие с кислородом приводит к реакции

Анодирование. Алюминий и легкие алюминиевые сплавы можно защитить еще больше, сделав толще естественный оксидный слой при помощи процесса, который называется анодированием. В этом процессе алюминиевый предмет помещают в качестве анода в электролизер, где в качестве электролита используется хромовая кислота либо серная кислота.

Алюминий реагирует с горячими разбавленными соляной и серной кислотами, образуя водород:

Сначала эта реакция протекает медленно из-за наличия оксидного слоя. Однако по мере того, как он удаляется, реакция становится все более интенсивной.

Концентрированная и разбавленная азотная кислота, а также концентрированная серная кислота делают алюминий пассивным. Это означает, что он не реагирует с указанными кислотами. Такая пассивность объясняется образованием тонкого слоя оксида на поверхности алюминия.

Растворы гидроксида натрия и других щелочей взаимодействуют с алюминием, образуя тетрагидроксоалюминат(III)-ионы и водород:

Если оксидный слой удален с поверхности, алюминий может выступать в роли восстановителя в окислительно-восстановительных реакциях (см. разд. 10.2). Он вытесняет металлы, расположенные ниже его в электрохимическом ряду, из их растворов. Например

Наглядным примером восстановительной способности алюминия является алюмотермитная реакция. Так называется реакция между порошкообразным алюминием и

оксидом В лабораторных условиях ее обычно инициируют, используя в качестве запала ленточку магния. Эта реакция протекает очень бурно, и в ней выделяется такое количество энергии, которого достаточно, чтобы расплавить образующееся железо:

Алюмотермитную реакцию используют для проведения алюмотермитной сварки; например, таким способом соединяют рельсы.

Оксид алюминия Оксид алюминия, или, как его часто называют, глинозем, представляет собой соединение, которое обладает как ионными, так и ковалентными свойствами. Он имеет температуру плавления и в расплавленном состоянии представляет собой электролит. По этой причине его часто считают ионным соединением. Однако в твердом состоянии оксид алюминия имеет каркасную кристаллическую структуру.

Корунд. Безводные формы оксида алюминия образуют в природных условиях минералы группы корундов. Корунд-это очень твердая кристаллическая форма оксида алюминия. Он используется в качестве абразивного материала, так как по твердости уступает только алмазу. Крупные и прозрачные, нередко окрашенные, кристаллы корундов ценятся как драгоценные камни. Чистый корунд бесцветен, однако наличие в нем небольшого количества примесей оксидов -металлов придает драгоценным корундам характерную окраску. Например, окраска рубина обусловлена наличием в корунде ионов а окраска сапфиров - наличием ионов кобальта Фиолетовая окраска аметиста обусловлена наличием в нем примеси марганца. Сплавляя глинозем с оксидами различных -металлов, можно получать искусственные драгоценные камни (см. также табл. 14.6 и 14.7).

Оксид алюминия нерастворим в воде и обладает амфотерными свойствами, вступая в реакцию как с разбавленными кислотами, так и с разбавленными щелочами. Реакция с кислотами описывается общим уравнением:

Реакция со щелочами приводит к образованию -иона:

Галогениды алюминия. Строение и химическая связь в галогенидах алюминия описаны в разд. 16.2.

Хлорид алюминия можно получать, пропуская сухой хлор либо сухой хлороводород над нагретым алюминием. Например

За исключением фторида алюминия, все остальные галогениды алюминия гидролизуются водой:

По этой причине галогениды алюминия в контакте с влажным воздухом «дымят».

Ионы алюминия. Мы уже указывали выше, что ион гидратируется в воде. При растворении солей алюминия в воде устанавливается следующее равновесие:

В этой реакции вода выступает в роли основания, так как она акцептирует протон, а гидратированный ион алюминия выступает в роли кислоты, так как он донирует протон. По этой причине соли алюминия обладают кислотными свойствами. Если в

Само название металла «алюминий» произошло от латинского слова «Аluminium». Химический символ рассматриваемого элемента является набором из двух первых букв названия - «Al », в периодической системе Дмитрия Ивановича Менделеева он находится в третьей группе, имеет атомный номер тринадцать и атомную массу 26,9815.

Давайте рассмотрим основные химические свойства элемента. Алюминий представляет собой легкий, мягкий металл бело-серебристого цвета. Он довольно быстро окисляется, обладает удельной плотностью 2,7 г/ см³ и температурой плавления равной 660 градусам по Цельсию.

Алюминий является самым распространенным в земной коре металлом и находится на третьем месте по распространенности среди всех атомов после таких веществ, как кислород и кремний. В природе рассматриваемый химический элемент представлен одним лишь стабильным нуклидом « 27 Al ». Искусственным путем были получены различные радиоактивные изотопы алюминия, из которых самым долгоживущим является « 26 Al », период его полураспада составляет целых 720 тысяч лет.

Как уже было отмечено выше, алюминий является самым распространенным металлом в земной коре нашей планеты и занимает третье место среди всех известных химических элементов земной коры. Хотелось бы заметить, что на долю данного металла приходится около восьми процентов состава вообще всей земной коры.

В настоящее время промышленная добыча алюминия в основной своей части проводится методом переработки бокситной руды. На всем земном шаре каждый год добывается от восьмидесяти до девяноста миллионов тонн бакситной руды. Не многим меньше тридцати процентов от мирового объема добычи приходится на Австралию, а пятнадцать процентов разведанных мировых запасов бокситной руды приходится на Ямайку. При сохранении нынешнего уровня международного потребления и производства алюминия, существующих разведанных запасов металла будет вполне достаточно для удовлетворения потребностей человечества на несколько сотен лет.

Если рассмотреть все существующие на сегодняшний день металлы, можно заметить, что алюминий имеет наиболее разностороннее применение в самых разных отрасляхпромышленности. Давайте рассмотрим подробно, в каких производствах наиболее часто используют алюминий как металл.

Довольно широко алюминий используется в машиностроительной отрасли. Всем известно, что из данного металла изготавливают самолеты, кроме того металл используют в производстве автомобилей, морских и речных судов, изготовлении деталей для других машин и оборудования.

В химической отрасли промышленности алюминий используется в качестве так называемого восстановителя. В строительной сфере данный металл широко применяется при изготовлении оконных рам, а также входных и межкомнатных дверей, элементов отделки, других элементов.

Алюминий используется и в пищевой отрасли промышленности в качестве вспомогательного материала при изготовлении упаковочных изделий. Кроме всего прочего алюминий широко используется при изготовлении товаров для быта, например, алюминиевые столовые приборы (ложки, вилки, кухонные ножи), или алюминиевая фольга, предназначенная для хранения продуктов питания и другие товары.

История

Само название металла «Алюминий» произошло от латинского «aluminium», которое в свою очередь произошло от латинского слова «alumen». Так в древности назвали квасцы, представляющие собой сульфат калия и алюминия, химическая формула которых имеет вид KAl(SO 4) 2 ·12H 2 O. Эти квасцы долгое время использовались в качестве вспомогательного средства для выделки и обработки кожи, а также в качестве вяжущего средства.

Алюминий обладает высокой химической активностью, именно поэтому для того, чтобы отрыть и выделить чистый алюминий понадобилось примерно около ста лет. Еще в конце восемнадцатого века, в 1754 году немецкий ученый-химик А. Маргграф сделал вывод о том, что из квасцов может быть получено твердое тугоплавкое вещество, другими словами оксид алюминия. Маргграф описывал это немного другими словами, оно говорил, что вполне реально получить из квасцов «землю» (в то время так и называли твердое тугоплавкое вещество). Немного позднее стало известно, что точь-в-точь такая же «земля» может быть получена и из самой обыкновенной глины, в результате чего эту «землю» начали называть глиноземом.

Алюминий как металл люди сумели получить лишь в 1825 году. Первооткрывателем в данной сфере стал датский ученый-физик Х. К. Эрстед. Он обработал сплавом калия и ртути (в химии данная смесь называется амальгамой натрия) вещество AlCl 3 , т.е. хлорид алюминия. Такое вещество можно было получить из обыкновенного глинозема. По завершении эксперимента Эрстед просто осуществил отгонку ртути, после чего удалось выделить порошок алюминия, имеющий серый оттенок.

Более четверти века данный способ был единственно возможным в мире методом получения металлического алюминия, но чуть позже удалось его модернизировать. В 1854 году французский ученый-химик А. Э. Сент-Клер Девиль предложил собственный метод получения алюминия как металла. При выделении алюминия он использовал металлический натрий, из которого удавалось получать совершенно новый металл, так и появились первые в истории слитки настоящего металлического алюминия. В то время алюминий стоил очень дорого, данный металл считался драгоценным и из него изготавливали различные ювелирные украшения и дорогие аксессуары.

Промышленное получение алюминия началось еще позже, лишь в самом конце 19 века. В 1886 году французский ученый П. Эру и американский ученый Ч. Холл независимо друг от друга разработали и предложили промышленный метод производства алюминия как металла путем процесса электролиза расплава сложных химических смесей, включающих в себя фторид и оксид алюминия, а также другие вещества.

Но в конце девятнадцатого века электричество еще не использовалось настолько широко, чтобы позволить развернуться алюминиевой промышленности во весь размах, ведь процесс производства алюминия требует огромных затрат электроэнергии. Именно этот фактор стал причиной оттягивания широкого индустриального производства алюминия еще на несколько десятков лет. На промышленном уровне алюминий начали получать только в двадцатом веке.

На нашей родине Алюминий начали добывать немного позже, чем на Западе. Произошло это во времена сталинского режима и промышленного прогресса экономики Советского Союза. 14 мая 1932 года впервые в СССР был промышленным путем получен первый индустриальный алюминий. Произошло это знаменательное событие на Волховском алюминиевом комбинате, который был построен прямо возле Волховской гидроэлектростанции. С тех пор алюминий широко производится во многих странах мира и не менее широко используется в самых разных сферах жизни современного общества.

Нахождение в природе

Алюминий является одним из самых распространенных веществ на нашей планете. Среди всех известных на сегодняшний день металлов, находящихся в земной коре, он находится на первом месте, а среди всех химических элементов земной коры он занимает третье место, уступая лишь кислороду и кремнию. На долю алюминия приходится примерно 8,8 процентов от общей массы земной коры.

Алюминия на Земле в два раза больше чем железа, в триста пятьдесят раз больше чем вместе взятых меди, хрома, цинка, свинца и олова. Алюминий входит в состав огромнейшего количества самых разных минералов, основную часть из которых составляют алюмосиликаты и горные породы. Соединения алюминия как химического элемента содержат глины, базальты, а также граниты, полевые шпаты и другие природные образования.

При всем многообразии пород и минералов, в которых содержится алюминий, главным сырьем для промышленного уровня производства алюминия являются лишь бокситы, месторождения которых встречаются очень и очень редко. На территории Российской Федерации подобные месторождения можно найти только в Сибири и на Урале. Кроме того, промышленное значение имеют нефелины и алуниты.

Важнейшим на сегодня минералом алюминия является боксит, представляющий собой смесь основного оксида, химическая формула которого AlO(OH) с гидроксидом, химическая формула Al(OH) 3 . Самые крупные месторождения бокситов располагаются в таких странах, как Австралия (около 30% мировых запасов), Ямайка, Бразилия и Гвинея. Промышленная добыча бокситов ведется и в других странах мира.

Довольно богат алюминием алунит (так называемый квасцовый камень), химическая формула которого выглядит следующим образом (Na,K) 2 SO 4 ·Al 2 (SO 4) 3 ·4Al(OH), а также нефелин химическая формула (Na,K) 2 O·Al 2 O 3 ·2SiO 2 . Но известно еще более двухсот пятидесяти минералов, в составе которых присутствует алюминий. Большинство этих минералов составляют алюмосиликаты, из которых в большей степени и образована земная кора нашей планеты. При выветривании данных минералов образуется глина, в основе которой содержится минерал каолинит, химическая формула которого имеет вид Al 2 O 3 ·2SiO 2 ·2H 2 O. В глине обычно присутствуют примеси железа, которые придают ей буроватый цвет, но иногда встречается и чистая белая глина, которая называется каолин. Такая глина широко применяется при изготовлении различных изделий из фарфора, а также фаянсовых изделий.

Исключительно редко встречается очень твердый минерал корунд, уступающий по твердости лишь алмазу. Минерал представляет собой кристаллический оксид, имеет химическую формулу Al 2 O 3 , часто он бывает окрашен за счет примесей других элементов в различные цвета. Существует синяя разновидность данного минерала, которая получила свою окраску по причине наличия примесей железа и титана, это всем известный драгоценный камень сапфир. Корунд с красной примесью называют рубином, он получил такой цвет за счет примеси хрома. Различные примеси могут окрасить так называемый благородный минерал корунд и в другие цвета, среди которых зеленый, желтый, фиолетовый, оранжевый, а также другие самые разные цвета и оттенки.

Алюминий как микроэлемент может присутствовать в тканях жителей нашей планеты: растений и животных. В природе встречаются существа с организмами-концентраторами алюминия, они накапливают металл в некоторых своих органам. К таким организмам можно отнести плаунов и некоторых моллюсков.

Применение

Алюминий и его сплавы занимают второе место по применению, уступая лишь железу и его сплавам. Широкое применение алюминия в различных сферах во многом связано с его уникальными свойствами: малая плотность, коррозийная стойкость в воздухе, высокая электро- и теплопроводность, а также сравнительно высокая прочность. Алюминий легко поддается обработке: штамповка, ковка, прокатка и т.д.

Электропроводность алюминия довольно высока (65,5% электропроводности меди) высокая прочность, поэтому из чистого алюминия изготавливают проволоку и фольгу для упаковки. Но основную часть алюминия расходуют для изготовления сплавов. Сплавы алюминия имеют высокую плотность, хорошую коррозийную стойкость, тепло- и электропроводность, пластичность, жаропрочность. На поверхность таких сплавов можно легко нанести декоративные или защитные покрытия.

Разнообразие сплавов из алюминия обусловлено различными добавками, образующими с ним интерметаллические соединения или растворы. Основная часть алюминия используется при изготовлении легких сплавов: силумина, дуралюмина и др. Такой сплав после закалки становится около 7 раз прочнее чистого алюминия и легче железа в три раза. Его производят путем сплава алюминия с медью, магнием, марганцем, кремнием и железом.

Широко используются силумины, т.е. сплавы алюминия с кремнием. Также производятся жаропрочные и криогенные сплавы. Необыкновенная легкость и прочность сплавов из алюминия очень пригодилась при производстве летательных аппаратов. К примеру, из сплава алюминия с магнием и кремнием делают вертолетные винты. Алюминиевая бронза (11% алюминия) обладает высокой устойчивостью не только в морской воде, но и в соляной кислоте. В Советском Союзе с 26 по 57 гг. из такого сплава чеканили монеты достоинством от 1 до 5 копеек. В металлургии алюминий применяют как основу для сплавов, а также как легирующую добавку в сплавах на основе магния, железа, меди, никеля и т.д.

Алюминиевые сплавы широко применяются в быту, в архитектуре и строительстве, в судостроении, автомобилестроении, а также в космической и авиационной технике. Из сплава алюминия был изготовлен первый на Земле искусственный спутник. Циркалой - сплав алюминия циркония – широко применяется в ядерном ракетостроении. Алюминий применяют и при производстве взрывчатки. Литая смесь из тринитротолуола и алюминиевого порошка, т.е. алюмотол, является одним из самых мощных взрывчатых промышленных веществ. Зажигательные составы кроме алюминия содержат окислитель перхлорат, нитрат. Пиротехнический состав «Звездочки» также включает в себя алюминий. Термит, т.е. смесь алюминиевого порошка с оксидами других металлов, применяется для получения различных сплавов и металлов, в зажигательных боеприпасах, для сварки рельс.

Стоит отметить возможность окрашивания оксидной пленки алюминия на поверхности металла, которые получают электрохимическим способом. Такой алюминий называют анодированным. Анодированный алюминий напоминающий внешне золото и служит материалом для изготовления бижутерии.

Применяя изделия из алюминия в быту нужно понимать, что хранить в алюминиевой посуде или нагревать в ней можно только жидкости с нейтральной кислотностью, например воду. Если же в алюминиевой кастрюле сварить кислые щи, пища приобретет малоприятный металлический привкус. Поэтому использование посуды из алюминия не желательно.

Около четверти всего производимого в мире алюминия приходится на строительство, столько же на транспортное машиностроение, около 15% идет на изготовление упаковочных материалов, и десятая часть расходуется в радиоэлектронике.

Производство

Чарльз Мартин Холл еще в 1886 году открыл современный способ производства алюминия. В возрасте16-ти лет он услышал, как его учитель Ф.Ф.Джуэтт сказал, что человек, открывший дешевый способ производства алюминия станет не только безумно богатым, но и сделает огромную услугу всему человечеству. Джуэтт показал своим ученикам небольшой образец ербристого металла, после чего Чарлз Мартин Холл заявил, что найдет способ его получения.

На протяжении шести лет Холл работал с алюминием, перепробовав все способы, но безрезультатно. Наконец он решил воспользоваться электролизом. Электростанций в то далекое время еще не было, поэтому электрический ток получали из огромных угольно-цинковых батарей с серной и азотной кислотами. Холл устроил в своем сарае небольшую лабораторию. Его сестра Джулия всячески помогала брату, ей удалось сохранить все его записи, благодаря которым открытие можно проследить по дням.

Самым трудным в работе был подбор электролита, а также защита алюминия от окисления. Спустя полгода изнурительной работы наконец-таки удалось добыть несколько шариков металла. Под действием эмоций Холл немедленно прибежал к своему уже бывшему преподавателю и показал ему серебристые шарики со словами «Я получил его!». Этот случай произошел 23.02.1886г. Как бы это ни показалось странным, но француз Поль Эру через два месяца после этой даты взял патент на изобретение. На самом деле они не зависимо друг от друга практически одновременно открыли способ получения алюминия. Что интересно, года рождения и смерти этих ученых также совпадают.

Тот первый десяток шариков, которые удалось произвести Холлу, хранится в Питтсбурге в Американской Алюминиевой компании. Данный предмет считается национальной реликвией. В Питтсбургском колледже стоит памятник холлу, отлитый из алюминия.

21-летний ученый, как и предсказывал его учитель, получил всемирное признание, стал знаменитым и богатым человеком. Все у него было хорошо, только не в личном плане. Невеста Холла не могла смириться с тем, что ее жених все время проводит в лаборатории, и в последствии расторгнута помолвку, так и не выйдя замуж. После этого Холл вернулся в родной колледж, где работал вплоть до конца жизни. Говорили, что колледж для Холла был и матерью, и женой, и детьми. Чарльз Мартин Холл завещал родному колледжу большую половину своего наследства, а именно 5000000 долларов (в то время это была просто космическая сумма). Холл умер от лейкемии, когда ему был 51 год.

Метод, разработанный Холлом и Эру, позволил получать огромное количество алюминия при помощи электричества. Сравнительно недорогой метод довольно скоро вышел на промышленный уровень. Если сравнить, сколько алюминия было получено до и после открытия, все сразу станет ясно. С 1855 по 1890 год было произведено всего 200 тонн метала, тогда как с 1890 до 1900 по методу Чарльза Мартина Холла во всем мире получили уже 28000 тонн металла. К началу 30-х годов ХХ века мировое производство алюминия за год достигало цифры 300 тысяч тонн. На сегодняшний день каждый год производится около 15 миллионов тонн алюминия.

В специально предназначенных ваннах при температуре около 965 °С технический Al2O3 (раствор глинозема) подвергают электролизу в Na3AlF6, т.е. расплавленном криолите, который синтезируют частично или добывают в виде минерала. На дне ванны накапливается жидкий алюминий (катод), а на внутренних анодах, которые постепенно обгорают, выделяется кислород. Если напряжение будет низким и составит около 4,5 В, потребление тока будет равно примерно 250 тысячам А. Для получения 1 тонны алюминия требуется 1 сутки и 15 тысяч кВ/ч электричества. Для сравнения, трехподъездному девятиэтажному дому этой энергии хватило бы более чем на месяц. На производстве алюминия образуются летучие соединения, поэтому получение металла считается экологически опасным производством.

Физические свойства

С точки зрения общих физических свойств алюминий представляет собой типичный металл. Его кристаллическая решетка является кубической, гранецентрированной. Параметр металла а равен 0,40403 нм. Температура плавления алюминия в чистом виде составляет 660 градусов по Цельсию, температура кипения металла равна 2450 градусам по Цельсию, плотность вещества составляет 2,6989 грамм на метр кубический. У рассматриваемого металла температурный коэффициент линейного расширения равен примерно 2,5·10 -5 К -1 . Алюминий обладает стандартным электронным потенциалом, который можно представить как Al 3+ /Al-1,663В.

Исходя из массы металла, можно заявить, что алюминий является одним из самых легких металлических веществ на планете. Легче его только такие металлы, как магний и бериллий, а также щелочноземельные и щелочные металлы, за вычетом бария. Расплавить алюминий довольно просто, для этого необходимо нагреть металл до температуры 660 градусов по Цельсию. К примеру, тонкую алюминиевую проволоку можно расплавить на обыкновенной конфорке простой домашней газовой плиты. Но вот достичь температуры кипения намного сложнее, алюминий начинает закипать лишь при достижении 2452 градусов Цельсия.

По своим электропроводящим свойствам алюминий занимает четвертое место среди всех остальных металлов. Он уступает серебру, которое, к стати, находится на первом месте, а также уступает меди и золоту. Данный факт обуславливает широкое практическое применение металла, что во многом обусловлено его относительной дешевизной. В точно таком же порядке меняется и теплопроводность вышеописанных металлов. В способности алюминия быстро проводить тепло довольно легко убедиться на практике, для этого достаточно просто опустить в горячий чай или кофе алюминиевую ложку, при этом Вы сразу почувствуете, насколько быстро ложка нагрелась.

Еще одним редким, а во многом и уникальным свойством алюминия является его отражающая способность. Ровная отполированная блестящая поверхность металла отлично отражает световые лучи. Отражается от восьмидесяти до девяноста процентов света в видимой области спектра, точная цифра во многом зависит от длины самой волны. В области ультрафиолетового излучения алюминию вообще нет равных среди других металлов, здесь его отражающие способности просто уникальны. К примеру, серебро, именно в ультрафиолете обладает очень низкой отражательной способностью. А вот в ультракрасной области алюминий по своим отражающим способностям уступает серебру.

Чистый алюминий, лишенный всяческих примесей, является довольно мягким металлом. Хотелось бы отметить, что он примерно втрое мягче той же меди. Именно поэтому довольно толстые алюминиевые стержни или планки удивительно легко сгибаются без применения особых усилий. Но это лишь в чистом виде, в некоторых из десятков известных сплавов алюминия твердость металла возрастает в разы и даже в десятки раз.

Кроме всего прочего алюминий имеет очень низкую подверженность коррозийным воздействиям внешней среды.
Алюминий и его сплавы по способу получения можно разделить на три вида:

  • - деформируемые;
  • - подвергаемые обработке давлением;
  • - литейные, которые используются в виде фасонного литья.
Сплавы алюминия можно разделить и по применению термообработки:
  • - термически не упрочняемые;
  • - термически упрочняемые.

За вычетом вышеописанных классификаций сплавы алюминия можно разделить и по системам легирования.

Химические свойства

Алюминий - довольно активный металл. Антикоррозийные свойства алюминия обусловлены тем, что на воздухе он покрывается толстой оксидной пленкой Al 2 О 3 , препятствующей дальнейшему проникновению кислорода. Пленка также образуется, если металл поместить в концентрат азотной кислоты.

Степень окисления, характерная алюминию равна +3. Но алюминий способен образовывать и донорно-акцепторные связи за счет незаполненных 3d- и 3р-орбиталей. Именно поэтому такой ион, как Al3+ склонен к комплексообразованию, и образует анионные и катионные комплексы: AlF 6 3- , AlCl 4 - , Al(OH) 4 - ,Al(OH) 6 3- и многие другие. Существуют и комплексы с органическими соединениями.

По своей химической активности алюминий находится сразу за магнием. Это может показаться странным, ведь изделия из алюминия не разрушаются ни на воздухе, ни в кипящей воде, в отличие от железа алюминий не ржавеет. Но все это обусловлено наличием защитной оксидной оболочки алюминия. Если на горелке начать нагревать тонкую до 1мм пластинку металла, он будет плавиться, но течь не станет, т.к. всегда находится в оксидной оболочке. Но если лишить алюминий его защитной «брони», чего можно достичь путем погружения в раствор из ртутных солей, он сразу начинает проявлять свою «слабость». Даже при комнатной температуре он энергично реагирует с водой, выделяя водород 2Al + 6H 2 O -> 2Al(OH) 3 + 3H 2 . А, находясь на воздухе, алюминий, лишенный защитной пленки, просто превращается в порошок 2Al + 3O 2 -> 2Al 2 O 3 . В раздробленном состоянии алюминий особенно активен, пыль металла моментально сгорает на огне. Если взять и смешать пыль алюминия с пероксидом натрия, а затем капнуть водяную смесь, алюминий легко вспыхнет и сгорит белым пламенем.

Благодаря своей плотной связи с кислородом, алюминий может буквально «отнимать» кислород у оксидов других металлов. Например, термитная смесь. При ее горении выделяется так много тепла, что при этом полученное железо начинает плавиться 8Al + 3Fe 3 O 4 -> 4Al 2 O 3 + 9Fe. Данным методом восстанавливаются до металлов CoO, Fe 2 O 3 , NiO, V 2 O 5 , MoO 3 и ряд других оксидов. Однако при алюминотермии оксидов Cr 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , TiO 2 , ZrO 2 , B 2 O 3 теплоты реакции не хватает для достижения температуры плавления продуктов реакции.

Алюминий может легко растворяться в минеральных кислотах, образуя соли. Концентрат азотной кислоты способствует утолщению пленки из оксида металла, после такой обработки алюминий перестает реагировать даже на воздействие соляной кислоты. При помощи анодирования на поверхности металла образуется толстая пленка, которую можно легко окрасить в различные цвета.

Реакция 3CuCl 2 + 2Al -> 2AlCl 3 + 3Cu проходит довольно легко, в результате образуется много тепла, все это обусловлено быстрым разрушением защитной пленки за счет хлорида меди. При сплавлении металла со щелочами, образуются так называемые безводные алюминаты: Al 2 O 3 + 2NaOH -> 2NaAlO 2 + H 2 O. Существует и полудрагоценный алюминат Mg(AlO2)2, это камень шпинель.

Алюминий вступает в бурную реакцию с галогенами. Если в 1 мл брома поместить тонкую проволоку из алюминия, она через какое-то время ярко загорится. Если смешать порошки алюминия и йода, реакцию можно инициировать каплей воды, после чего можно заметить яркое пламя и фиолетовый дым от йода. Галогены алюминия всегда имеют кислую реакцию AlCl 3 + H 2 O -> Al(OH)Cl 2 + HCl, что обусловлено гидролизом.

С азотом алюминий вступает в реакцию лишь при температуре 800°С, при этом образуется нитрид AlN, с фосфором при температуре 500° С, при этом образуется фосфид AlP. С серой реакция начинается при достижении 200°С, при этом образуется сульфид Al 2 S 3 . Бориды AlB 2 и AlB 12 образуются при добавлении бора в расплавленный алюминий.

(А l ), галлий (Ga ), индий (In ) и таллий (Т l ).

Как видно из приведенных данных, все эти элементы были открыты в XIX столетии.

Открытие металлов главной подгруппы III группы

В

Al

Ga

In

Tl

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)



(Германия)


Бор представляет собой неметалл. Алюминий - переход­ный металл, а галлий, индий и таллий - полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar (Al ) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al +13) 2) 8) 3 , p – элемент,

Основное состояние

1s 2 2s 2 2p 6 3s 2 3p 1

Возбуждённое состояние

1s 2 2s 2 2p 6 3s 1 3p 2

Алюминий проявляет в соединениях степень окисления +3:

Al 0 – 3 e - → Al +3

2. Физические свойства

Алюминий в свободном виде - се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3) - при­мерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов , уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

Некоторые из них:

· Бокситы - Al 2 O 3 H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3)

· Нефелины - KNa 3 4

· Алуниты - KAl(SO 4) 2 2Al(OH) 3

· Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3)

· Корунд - Al 2 O 3

· Полевой шпат (ортоклаз) - K 2 O×Al 2 O 3 ×6SiO 2

· Каолинит - Al 2 O 3 ×2SiO 2 × 2H 2 O

· Алунит - (Na,K) 2 SO 4 ×Al 2 (SO 4) 3 ×4Al(OH) 3

· Берилл - 3ВеО Al 2 О 3 6SiO 2

Боксит

Al 2 O 3

Корунд

Рубин

Сапфир

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ

Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изученияхимических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия со ртутью – амальгамы).

I . Взаимодействие с простыми веществами

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С), с йодом в присутствии катализатора - воды:

2А l + 3 S = А l 2 S 3 (сульфид алюминия),

2А l + N 2 = 2А lN (нитрид алюминия),

А l + Р = А l Р (фосфид алюминия),

4А l + 3С = А l 4 С 3 (карбид алюминия).

2 Аl +3 I 2 =2 A l I 3 (йодид алюминия) ОПЫТ

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S­

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 ­

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

4А l + 3 O 2 = 2А l 2 О 3 + 1676 кДж.

ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ

ОПЫТ

II . Взаимодействие со сложными веществами

Взаимодействие с водой :

2 Al + 6 H 2 O=2 Al (OH) 3 +3 H 2

без оксидной пленки

ОПЫТ

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.

3 Fe 3 O 4 +8 Al =4 Al 2 O 3 +9 Fe + Q

Термитная смесь Fe 3 O 4 иAl (порошок) –используется ещё и в термитной сварке.

С r 2 О 3 + 2А l = 2С r + А l 2 О 3

Взаимодействие с кислотами :

С раствором серной кислоты:2 Al+ 3 H 2 SO 4 =Al 2 (SO 4) 3 +3 H 2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2А l + 6Н 2 S О 4(конц) = А l 2 (S О 4) 3 + 3 S О 2 + 6Н 2 О,

А l + 6Н NO 3(конц) = А l (NO 3 ) 3 + 3 NO 2 + 3Н 2 О.

Взаимодействие со щелочами .

2 Al + 2 NaOH + 6 H 2 O =2 Na [ Al (OH ) 4 ] +3 H 2

ОПЫТ

Na l (ОН) 4 ]тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

С растворами солей:

2 Al + 3 CuSO 4 = Al 2 (SO 4 ) 3 + 3 Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2 Al + 3 HgCl 2 = 2 AlCl 3 + 3 Hg

Выделившаяся ртуть растворяет алюминий, образуяамальгаму .

Обнаружение ионов алюминия в растворах : ОПЫТ


5. Применение алюминия и его соединений

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминияявляется авиационная промышленность : самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода : при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты . Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражениятепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сок.

Соли алюминия сильногидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na 3 AlF 6 растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия - электролитом.

2Al 2 O 3 эл.ток →4Al + 3O 2

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

2) 2Al 2 O 3 +3 C=4 Al+3 CO 2

ЭТО ИНТЕРЕСНО:

  • Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.
  • В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия.
  • К 1855 году французский ученыйСен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством НаполеонаIII, императораФранции. В знаксвоей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.
  • А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы.При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.
  • При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.

ТРЕНАЖЁРЫ

Тренажёр №1 - Характеристика алюминия по положению в Периодической системе элементов Д. И. Менделеева

Тренажёр №2 - Уравнения реакций алюминия с простыми и сложными веществами

Тренажёр №3 - Химические свойства алюминия

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций :
Al + H 2 SO 4 (раствор ) ->
Al + CuCl 2 ->
Al + HNO 3 (
конц ) - t ->
Al + NaOH + H 2 O ->

№3. Осуществите превращения:
Al -> AlCl 3 -> Al -> Al 2 S 3 -> Al(OH) 3 - t ->Al 2 O 3 -> Al

№4. Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите процентный состав сплава, если его общая масса была 10 г?

Получение алюмокалиевых квасцов

Алюминий (лат. Aluminium), – в периодической системе алюминий находится в третьем периоде, в главной подгруппе третьей группы. Заряд ядра +13. Электронное строение атома 1s 2 2s 2 2p 6 3s 2 3p 1 . Металлический атомный радиус 0,143 нм, ковалентный – 0,126 нм, условный радиус иона Al 3+ – 0,057 нм. Энергия ионизации Al – Al + 5,99 эВ.

Наиболее характерная степень окисления атома алюминия +3. Отрицательная степень окисления проявляется редко. Во внешнем электронном слое атома существуют свободные d-подуровни. Благодаря этому его координационное число в соединениях может равняться не только 4 (AlCl 4- , AlH 4- , алюмосиликаты), но и 6 (Al 2 O 3 , 3+).

Историческая справка . Название Алюминий происходит от лат. alumen – так еще за 500 лет до н.э. назывались алюминиевые квасцы, которые применялись как протрава при крашении тканей и для дубления кожи. Датский ученый X. К. Эрстед в 1825, действуя амальгамой калия на безводный АlСl 3 и затем отгоняя ртуть, получил относительно чистый Алюминий. Первый промышленного способ производства Алюминия предложил в 1854 французский химик А.Э. Сент-Клер Девиль: способ заключался в восстановлении двойного хлорида Алюминия и натрия Na 3 AlCl 6 металлическим натрием. Похожий по цвету на серебро, Алюминий на первых порах ценился очень дорого. С 1855 по 1890 годы было получено всего 200 т Алюминия. Современный способ получения Алюминия электролизом криолитоглиноземного расплава разработан в 1886 году одновременно и независимо друг от друга Ч. Холлом в США и П. Эру во Франции.

Нахождение в природе

Алюминий – самый распространенный в земной коре металл. На его долю приходится 5,5–6,6 мол. доли% или 8 масс.%. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al 2 O 3 . 2SiO 2 . 2H 2 O. Из других природных форм нахождения алюминия наибольшее значение имеют боксит Al 2 O 3 . xH 2 O и минералы корунд Al 2 O 3 и криолит AlF 3 . 3NaF.

Получение

В настоящее время в промышленности алюминий получают электролизом раствора глинозема Al 2 O 3 в расплавленнном криолите. Al 2 O 3 должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Температура плавления Al 2 O 3 около 2050 о С, а криолита – 1100 о С. Электролизу подвергают расплавленную смесь криолита и Al 2 O 3 , содержащую около 10 масс.% Al 2 O 3 , которая плавится при 960 о С и обладает электрической проводимостью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса. При добавлении AlF 3 , CaF 2 и MgF 2 проведение электролиза оказывается возможным при 950 о С.

Электролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичом. Его дно (под), собранное из блоков спрессованного угля, служит катодом. Аноды располагаются сверху: это – алюминиевые каркасы, заполненные угольными брикетами.

Al 2 O 3 = Al 3+ + AlO 3 3-

На катоде выделяется жидкий алюминий:

Al 3+ + 3е - = Al

Алюминий собирается на дне печи, откуда периодически выпускается. На аноде выделяется кислород:

4AlO 3 3- – 12е - = 2Al 2 O 3 + 3O 2

Кислород окисляет графит до оксидов углерода. По мере сгорания углерода анод наращивают.

Алюминий, кроме того, применяется как легирующая добавка ко многим сплавам для придания им жаростойкости.

Физические свойства алюминия . Алюминий сочетает весьма ценный комплекс свойств: малую плотность, высокие теплопроводность и электрическую проводимость, высокую пластичность и хорошую коррозионную стойкость. Он легко поддается ковке, штамповке, прокатке, волочению. Алюминий хорошо сваривается газовой, контактной и других видами сварки. Решетка Алюминия кубическая гранецентрированная с параметром а = 4,0413 Å. Свойства Алюминий, как и всех металлов, в значит, степени зависят от его чистоты. Свойства Алюминия особой чистоты (99,996%): плотность (при 20 °С) 2698,9 кг/м 3 ; t пл 660,24 °С; t кип около 2500 °С; коэффициент термического расширения (от 20° до 100 °С) 23,86·10 -6 ; теплопроводность (при 190 °С) 343 вт/м·К , удельная теплоемкость (при 100 °С) 931,98 дж/кг·К. ; электропроводность по отношению к меди (при 20 °С) 65,5%. Алюминий обладает невысокой прочностью (предел прочности 50–60 Мн/м 2), твердостью (170 Мн/м 2 по Бринеллю) и высокой пластичностью (до 50%). При холодной прокатке предел прочности Алюминия возрастает до 115 Мн/м 2 , твердость – до 270 Мн/м 2 , относительное удлинение снижается до 5% (1 Мн/м 2 ~ и 0,1 кгс/мм 2). Алюминий хорошо полируется, анодируется и обладает высокой отражательной способностью, близкой к серебру (он отражает до 90% падающей световой энергии). Обладая большим сродством к кислороду, Алюминий на воздухе покрывается тонкой, но очень прочной пленкой оксида Al 2 О 3 , защищающей металл от дальнейшего окисления и обусловливающей его высокие антикоррозионные свойства. Прочность оксидной пленки и защитное действие ее сильно убывают в присутствии примесей ртути, натрия, магния, меди и др. Алюминий стоек к действию атмосферной коррозии, морской и пресной воды, практически не взаимодействует с концентрированной или сильно разбавленной азотной кислотой, с органических кислотами, пищевыми продуктами.

Химические свойства

При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом – при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует.

По отношению к воде алюминий вполне устойчив. Но если механическим путем или амальгамированием снять предохраняющее действие оксидной пленки, то происходит энергичная реакция:

Сильно разбавленные, а также очень концентрированные HNO3 и H2SO4 на алюминий почти не действуют (на холоду), тогда как при средних концентрациях этих кислот он постепенно растворяется. Чистый алюминий довольно устойчив и по отношению к соляной кислоте, но обычный технический металл в ней растворяется.

При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты – соли, содержащие алюминий в составе аниона:

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na

Алюминий, лишенный защитной пленки, взаимодействует с водой, вытесняя из нее водород:

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2

Образующийся гидроксид алюминия реагирует с избытком щелочи, образуя гидроксоалюминат:

Al(OH) 3 + NaOH = Na

Суммарное уравнение растворения алюминия в водном растворе щелочи:

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2

Алюминий заметно растворяется в растворах солей, имеющих вследствие их гидролиза кислую или щелочную реакцию, например, в растворе Na 2 CO 3 .

В ряду напряжений он располагается между Mg и Zn. Во всех своих устойчивых соединениях алюминий трехвалентен.

Соединение алюминия с кислородом сопровождается громадным выделением тепла (1676 кДж/моль Al 2 O 3), значительно большим, чем у многих других металлов. В виду этого при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Mn, V, W и др.) в свободном состоянии.

Алюмотермией иногда пользуются для сварки отдельных стальных частей, в часности стыков трамвайных рельсов. Применяемая смесь («термит») состоит обычно из тонких порошков алюминия и Fe 3 O 4 . Поджигается она при помощи запала из смеси Al и BaO 2 . Основная реакция идет по уравнению:

8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe + 3350 кДж

Причем развивается температура около 3000 о С.

Оксид алюминия представляет собой белую, очень тугоплавкую (т. пл. 2050 о С) и нерастворимую в воде массу. Природный Al 2 O 3 (минерал корунд), а также полученный искусственно и затем сильно прокаленный отличается большой твердостью и нерастворимостью в кислотах. В растворимое состояние Al 2 O 3 (т. н. глинозем) можно перевести сплавлением со щелочами.

Обычно загрязненный оксидом железа природный корунд вследствие своей чрезвычайной твердости применяется для изготовления шлифовальных кругов, брусков и т.д. В мелко раздробленном виде он под названием наждака служит для очистки металлических поверхностей и изготовления наждачной бумаги. Для тех же целей часто пользуются Al 2 O 3 , получаемым сплавлением боксита (техническое название – алунд).

Прозрачные окрашеннные кристаллы корунда – красный рубин – примесь хрома – и синий сапфир – примесь титана и железа – драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы рубинов, содержащих малую примесь Cr 2 O 3 , применяют в качестве квантовых генераторов – лазеров, создающих направленный пучок монохроматического излучения.

Ввиду нерастворимости Al 2 O 3 в воде отвечающий этому оксиду гидроксид Al(OH) 3 может быть получен лишь косвенным путем из солей. Получение гидроксида можно представить в виде следующей схемы. При действии щелочей ионами OH – постепенно замещаются в аквокомплексах 3+ молекулы воды:

3+ + OH - = 2+ + H 2 O

2+ + OH - = + + H 2 O

OH - = 0 + H 2 O

Al(OH) 3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер. Однако и основные и особенно кислотные его свойства выражены довольно слабо. В избытке NH 4 OH гидроксид алюминия нерастворим. Одна из форм дегидратированного гидроксида – алюмогель используется в технике в качестве адсорбента.

При взаимодействии с сильными щелочами образуются соответствующие алюминаты:

NaOH + Al(OH) 3 = Na

Алюминаты наиболее активных одновалентных металлов в воде хорошо растворимы, но ввиду сильного гидролиза растворы их устойчивы лишь при наличии достаточного избытка щелочи. Алюминаты, производящиеся от более слабых оснований, гидролизованы в растворе практически нацело и поэтому могут быть получены только сухим путем (сплавлением Al 2 O 3 с оксидами соответствующих металлов). Образуются метаалюминаты, по своему составу производящиеся от метаалюминиевой кислоты HAlO 2 . Большинство из них в воде нерастворимо.

С кислотами Al(OH) 3 образует соли. Производные большинства сильных кислот хорошо растворимы в воде, но довольно значительно гидролизованы, и поэтому растворы их показывают кислую реакцию. Еще сильнее гидролизованы растворимые соли алюминия и слабых кислот. Вследствие гидролиза сульфид, карбонат, цианид и некоторые другие соли алюминия из водных растворов получить не удается.

В водной среде анион Al 3+ непосредственно окружен шестью молекулами воды. Такой гидратированный ион несколько диссоциирован по схеме:

3+ + H 2 O = 2+ + OH 3 +

Константа его диссоциации равна 1 . 10 -5 , т.е. он является слабой кислотой (близкой по силе к уксусной). Октаэдрическое окружение Al 3+ шестью молекулами воды сохраняется и в кристаллогидратах ряда солей алюминия.

Алюмосиликаты можно рассматривать как силикаты, в которых часть кремниекислородных тетраэдров SiO 4 4 – заменена на алюмокислородные тетраэдры AlO 4 5- Из алюмосиликатов наиболее распространены полевые шпаты, на долю которых приходится более половины массы земной коры. Главные их представители – минералы

ортоклаз K 2 Al 2 Si 6 O 16 или K 2 O . Al 2 O 3 . 6SiO 2

альбит Na 2 Al 2 Si 6 O 16 или Na 2 O . Al 2 O 3 . 6SiO 2

анортит CaAl 2 Si 2 O 8 или CaO . Al 2 O 3 . 2SiO 2

Очень распространены минералы группы слюд, например мусковит Kal 2 (AlSi 3 O 10) (OH) 2 . Большое практическое значение имеет минерал нефелин (Na, K) 2 , который используется для получения глинозема содовых продуктов и цемента. Это производство складывается из следующих операций: a) нефелин и известняк спекают в трубчатых печах при 1200 о С:

(Na, K) 2 + 2CaCO 3 = 2CaSiO 3 + NaAlO 2 + KAlO 2 + 2CO 2

б) образовавшуюся массу выщелачивают водой – образуется раствор алюминатов натрия и калия и шлам CaSiO 3:

NaAlO 2 + KAlO 2 + 4H 2 O = Na + K

в) через раствор алюминатов пропускают образовавшийся при спекании CO 2:

Na + K + 2CO 2 = NaHCO 3 + KHCO 3 + 2Al(OH) 3

г) нагреванием Al(OH) 3 получают глинозем:

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

д) выпариванием маточного раствора выделяют соду и потаж, а ранее полученный шлам идет на производство цемента.

При производстве 1 т Al 2 O 3 получают 1 т содопродуктов и 7.5 т цемента.

Некоторые алюмосиликаты обладают рыхлой структурой и способны к ионному обмену. Такие силикаты – природные и особенно искусственные – применяются для водоумягчения. Кроме того, благодаря своей сильно развитой поверхности, они используются в качестве носителей катализаторов, т.е. как материалы, пропитываемые катализатором.

Галогениды алюминия в обычных условиях – бесцветные кристаллические вещества. В ряду галогенидов алюминия AlF 3 сильно отличается по свойствам от своих аналогов. Он тугоплавок, мало растворяется в воде, химически неактивен. Основной способ получения AlF 3 основан на действии безводного HF на Al 2 O 3 или Al:

Al 2 O 3 + 6HF = 2AlF 3 + 3H 2 O

Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма реакционноспособны и хорошо растворимы не только в воде, но и во многих органических растворителях. Взаимодействие галогенидов алюминия с водой сопровождается значительным выделением теплоты. В водном растворе все они сильно гидролизованы, но в отличие от типичных кислотных галогенидов неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже при обычных условиях, AlCl 3 , AlBr 3 и AlI 3 дымят во влажном воздухе (вследствие гидролиза). Они могут быть получены прямым взаимодействием простых веществ.

Плотности паров AlCl 3 , AlBr 3 и AlI 3 при сравнительно невысоких температурах более или менее точно соответствуют удвоенным формулам – Al 2 Hal 6 . Пространственная структура этих молекул отвечает двум тетраэдрам с общим ребром. Каждый атом алюминия связан с четырьмя атомами галогена, а каждый из центральных атомов галогена – с обоими атомами алюминия. Из двух связей центрального атома галогена одна является донорно-акцепторной, причем алюминий функционирует в качестве акцептора.

С галогенидными солями ряда одновалентных металлов галогениды алюминия образуют комплексные соединения, главным образом типов M 3 и M (где Hal – хлор, бром или иод). Склонность к реакциям присоединения вообще сильно выражена у рассматриваемых галогенидов. Именно с этим связано важнейшее техническое применение AlCl 3 в качестве катализатора (при переработке нефти и при органических синтезах).

Из фторалюминатов наибольшее применение (для получения Al, F 2 , эмалей, стекла и пр.) имеет криолит Na 3 . Промышленное производство искусственного криолита основано на обработке гидроксида алюминия плавиковой кислотой и содой:

2Al(OH) 3 + 12HF + 3Na 2 CO 3 = 2Na 3 + 3CO 2 + 9H 2 O

Хлоро-, бромо- и иодоалюминаты получаются при сплавлении тригалогенидов алюминия с галогенидами соответствующих металлов.

Хотя с водородом алюминий химически не взаимодействует, гидрид алюминия можно получить косвенным путем. Он представляет собой белую аморфную массу состава (AlH 3) n . Разлагается при нагревании выше 105 о С с выделением водорода.

При взаимодействии AlH 3 с основными гидридами в эфирном растворе образуются гидроалюминаты:

LiH + AlH 3 = Li

Гидридоалюминаты – белые твердые вещества. Бурно разлагаются водой. Они – сильные восстановители. Применяются (в особенности Li) в органическом синтезе.

Сульфат алюминия Al 2 (SO 4) 3 . 18H 2 O получается при действии горячей серной кислоты на оксид алюминия или на каолин. Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги.

Алюмокалиевые квасцы KAl(SO 4) 2 . 12H 2 O применяются в больших количествах для дубления кож, а также в красильном деле в качестве протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне.

Из остальных производных алюминия следует упомянуть его ацетат (иначе – уксуснокислую соль) Al(CH 3 COO) 3 , используемый при крашении тканей (в качестве протравы) и в медицине (примочки и компрессы). Нитрат алюминия легко растворим в воде. Фосфат алюминия нерастворим в воде и уксусной кислоте, но растворим в сильных кислотах и щелочах.

Алюминий в организме . Алюминий входит в состав тканей животных и растений; в органах млекопитающих животных обнаружено от 10 -3 до 10 -5 % Алюминия (на сырое вещество). Алюминий накапливается в печени, поджелудочной и щитовидной железах. В растительных продуктах содержание Алюминия колеблется от 4 мг на 1 кг сухого вещества (картофель) до 46 мг (желтая репа), в продуктах животного происхождения – от 4 мг (мед) до 72 мг на 1 кг сухого вещества (говядина). В суточном рационе человека содержание алюминия достигает 35–40 мг. Известны организмы – концентраторы алюминия, например, плауны (Lycopodiaceae), содержащие в золе до 5,3% алюминия, моллюски (Helix и Lithorina), в золе которых 0,2–0,8% алюминия. Образуя нерастворимые соединения с фосфатами, алюминий нарушает питание растений (поглощение фосфатов корнями) и животных (всасывание фосфатов в кишечнике).

Геохимия алюминия . Геохимические черты алюминия определяются его большим сродством к кислороду (в минералах алюминий входит в кислородные октаэдры и тетраэдры), постоянной валентностью (3), слабой растворимостью большинства природных соединений. В эндогенных процессах при застывании магмы и формировании изверженных пород алюминий входит в кристаллическую решетку полевых шпатов, слюд и других минералов – алюмосиликатов. В биосфере алюминий – слабый мигрант, его мало в организмах и гидросфере. Во влажном климате, где разлагающиеся остатки обильной растительности образуют много органических кислот, алюминий мигрирует в почвах и водах в виде органоминеральных коллоидных соединений; алюминий адсорбируется коллоидами и осаждается в нижней части почв. Связь алюминия с кремнием частично нарушается и местами в тропиках образуются минералы – гидрооксиды алюминия – бемит, диаспор, гидраргиллит. Большая же часть алюминия входит в состав алюмосиликатов – каолинита, бейделлита и других глинистых минералов. Слабая подвижность определяет остаточное накопление алюминия в коре выветривания влажных тропиков. В результате образуются элювиальные бокситы. В прошлые геологические эпохи бокситы накапливались также в озерах и прибрежной зоне морей тропических областей (например, осадочные бокситы Казахстана). В степях и пустынях, где живого вещества мало, а воды нейтральные и щелочные, алюминий почти не мигрирует. Наиболее энергична миграция алюминия в вулканических областях, где наблюдаются сильнокислые речные и подземные воды, богатые алюминием. В местах смещения кислых вод с щелочными – морскими (в устьях рек и других), алюминий осаждается с образованием бокситовых месторождений.

Применение Алюминия . Сочетание физических, механических и химических свойств Алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с других металлами. В электротехнике Алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость Алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из Алюминий вдвое меньше медных). Сверхчистый Алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности оксидной пленки Алюминия пропускать электрический ток только в одном направлении. Сверхчистый Алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа А III B V , применяемых для производства полупроводниковых приборов. Чистый Алюминий используют в производстве разного рода зеркальных отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, Алюминий применяется как конструкционный материал в ядерных реакторах.

В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т.д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют в оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделий. Резко возросло потребление Алюминий для отделки зданий, архитектурных, транспортных и спортивных сооружений.

В металлургии Алюминий (помимо сплавов на его основе) – одна из самых распространенных легирующих добавок в сплавах на основе Сu, Mg, Ti, Ni, Zn и Fe. Применяют Алюминий также для раскисления стали перед заливкой ее в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе Алюминия методом порошковой металлургии создан САП (спеченный алюминиевый порошок), обладающий при температурах выше 300 °С большой жаропрочностью.

Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения Алюминия.

Производство и потребление Алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.

Список использованной литературы

1. В.А. Рабинович, З.Я. Хавин «Краткий химический справочник»

2. Л.С. Гузей «Лекции по общей химии»

3. Н.С. Ахметов «Общая и неорганическая химия»

4. Б.В. Некрасов «Учебник общей химии»

5. Н.Л. Глинка «Общая химия»

В земной коре алюминия очень много: 8,6% по массе. Он занимает первое место среди всех металлов и третье среди других элементов (после кислорода и кремния). Алюминия вдвое больше, чем железа, и в 350 раз больше, чем меди, цинка, хрома, олова и свинца вместе взятых! Как писал более 100 лет назад в своем классическом учебнике Основы химии Д.И.Менделеев , из всех металлов «алюминий есть самый распространенный в природе; достаточно указать на то, что он входит в состав глины, чтоб ясно было всеобщее распространение алюминия в коре земной. Алюминий, или металл квасцов (alumen), потому и называется иначе глинием, что находится в глине».

Важнейший минерал алюминия – боксит, смесь основного оксида AlO(OH) и гидроксида Al(OH) 3 . Крупнейшие месторождения боксита находятся в Австралии, Бразилии, Гвинее и на Ямайке; промышленная добыча ведется и в других странах. Богаты алюминием также алунит (квасцовый камень) (Na,K) 2 SO 4 ·Al 2 (SO 4) 3 ·4Al(OH) 3 , нефелин (Na,K) 2 O·Al 2 O 3 ·2SiO 2 . Всего же известно более 250 минералов, в состав которых входит алюминий; большинство из них – алюмосиликаты, из которых и образована в основном земная кора. При их выветривании образуется глина, основу которой составляет минерал каолинит Al 2 O 3 ·2SiO 2 ·2H 2 O. Примеси железа обычно окрашивают глину в бурый цвет, но встречаются и белая глина – каолин, которую применяют для изготовления фарфоровых и фаянсовых изделий.

Изредка встречается исключительно твердый (уступает лишь алмазу) минерал корунд – кристаллический оксид Al 2 O 3 , часто окрашенный примесями в разные цвета. Его синяя разновидность (примесь титана и железа) называется сапфиром, красная (примесь хрома) – рубином. Разные примеси могут окрашивать так называемый благородный корунд также в зеленый, желтый, оранжевый, фиолетовый и другие цвета и оттенки.

Еще недавно считалось, что алюминий как весьма активный металл не может встречаться в природе в свободном состоянии, однако в 1978 в породах Сибирской платформы был обнаружен самородный алюминий – в виде нитевидных кристаллов длиной всего 0,5 мм (при толщине нитей несколько микрометров). В лунном грунте, доставленном на Землю из районов морей Кризисов и Изобилия, также удалось обнаружить самородный алюминий. Предполагают, что металлический алюминий может образоваться конденсацией из газа. Известно, что при нагревании галогенидов алюминия – хлорида, бромида, фторида они могут с большей или меньшей легкостью испаряться (так, AlCl 3 возгоняется уже при 180° C). При сильном повышении температуры галогениды алюминия разлагаются, переходя в состояние с низшей валентностью металла, например, AlCl. Когда при понижении температуры и отсутствии кислорода такое соединение конденсируется, в твердой фазе происходит реакция диспропорционирования: часть атомов алюминия окисляется и переходит в привычное трехвалентное состояние, а часть – восстанавливается. Восстановиться же одновалентный алюминий может только до металла: 3AlCl ® 2Al + AlCl 3 . В пользу этого предположения говорит и нитевидная форма кристаллов самородного алюминия. Обычно кристаллы такого строения образуются вследствие быстрого роста из газовой фазы. Вероятно, микроскопические самородки алюминия в лунном грунте образовались аналогичным способом.

Название алюминия происходит от латинского alumen (род. падеж aluminis). Так называли квасцы, двойной сульфат калия-алюминия KAl(SO 4) 2 ·12H 2 O), которые использовали как протраву при крашении тканей. Латинское название, вероятно, восходит к греческому «халмэ» – рассол, соляной раствор. Любопытно, что в Англии алюминий – это aluminium, а в США – aluminum.

Во многих популярных книгах по химии приводится легенда о том, что некий изобретатель, имя которого история не сохранила, принес императору Тиберию, правившему Римом в 14–27 н.э., чашу из металла, напоминающего цветом серебро, но более легкого. Этот подарок стоил жизни мастеру: Тиберий приказал казнить его, а мастерскую уничтожить, поскольку боялся, что новый металл может обесценить серебро в императорской сокровищнице.

Эта легенда основана на рассказе Плиния Старшего , римского писателя и ученого, автора Естественной истории – энциклопедии естественнонаучных знаний античных времен. Согласно Плинию, новый металл был получен из «глинистой земли». А ведь глина действительно содержит алюминий.

Современные авторы почти всегда делают оговорку, что вся эта история – не более чем красивая сказка. И это не удивительно: алюминий в горных породах чрезвычайно прочно связан с кислородом, и для его выделения необходимо затратить очень много энергии. Однако в последнее время появились новые данные о принципиальной возможности получения металлического алюминия в древности. Как показал спектральный анализ, украшения на гробнице китайского полководца Чжоу-Чжу, умершего в начале III в. н.э., сделаны из сплава, на 85% состоящего из алюминия. Могли ли древние получить свободный алюминий? Все известные способы (электролиз, восстановление металлическим натрием или калием) отпадают автоматически. Могли ли в древности найти самородный алюминий, как, например, самородки золота, серебра, меди? Это тоже исключено: самородный алюминий – редчайший минерал, который встречается в ничтожных количествах, так что древние мастера никак не могли найти и собрать в нужном количестве такие самородки.

Однако возможно и другое объяснение рассказа Плиния. Алюминий можно восстановить из руд не только с помощью электричества и щелочных металлов. Существует доступный и широко используемый с древних времен восстановитель – это уголь, с помощью которого оксиды многих металлов при нагревании восстанавливаются до свободных металлов. В конце 1970-х немецкие химики решили проверить, могли ли в древности получить алюминий восстановлением углем. Они нагрели в глиняном тигле до красного каления смесь глины с угольным порошком и поваренной солью или поташом (карбонатом калия). Соль была получена из морской воды, а поташ – из золы растений, чтобы использовать только те вещества и методы, которые были доступны в древности. Через некоторое время на поверхности тигля всплыл шлак с шариками алюминия! Выход металла был мал, но не исключено, что именно этим путем древние металлурги могли получить «металл 20 века».

Свойства алюминия.

По цвету чистый алюминий напоминает серебро, это очень легкий металл: его плотность всего 2,7 г/см 3 . Легче алюминия только щелочные и щелочноземельные металлы (кроме бария), бериллий и магний. Плавится алюминий тоже легко – при 600° С (тонкую алюминиевую проволоку можно расплавить на обычной кухонной конфорке), зато кипит лишь при 2452° С. По электропроводности алюминий – на 4-м месте, уступая лишь серебру (оно на первом месте), меди и золоту, что при дешевизне алюминия имеет огромное практическое значение. В таком же порядке изменяется и теплопроводность металлов. В высокой теплопроводности алюминия легко убедиться, опустив алюминиевую ложечку в горячий чай. И еще одно замечательное свойство у этого металла: его ровная блестящая поверхность прекрасно отражает свет: от 80 до 93% в видимой области спектра в зависимости от длины волны. В ультрафиолетовой области алюминию в этом отношении вообще нет равных, и лишь в красной области он немного уступает серебру (в ультрафиолете серебро имеет очень низкую отражательную способность).

Чистый алюминий – довольно мягкий металл – почти втрое мягче меди, поэтому даже сравнительно толстые алюминиевые пластинки и стержни легко согнуть, но когда алюминий образует сплавы (их известно огромное множество), его твердость может возрасти в десятки раз.

Характерная степень окисления алюминия +3, но благодаря наличию незаполненных 3р - и 3d -орбиталей атомы алюминия могут образовывать дополнительные донорно-акцепторные связи. Поэтому ион Al 3+ с небольшим радиусом весьма склонен к комплексообразованию, образуя разнообразные катионные и анионные комплексы: AlCl 4 – , AlF 6 3– , 3+ , Al(OH) 4 – , Al(OH) 6 3– , AlH 4 – и многие другие. Известны комплексы и с органическими соединениями.

Химическая активность алюминия весьма высока; в ряду электродных потенциалов он стоит сразу за магнием. На первый взгляд такое утверждение может показаться странным: ведь алюминиевая кастрюля или ложка вполне устойчивы на воздухе, не разрушаются и в кипящей воде. Алюминий, в отличие от железа, не ржавеет. Оказывается, на воздухе металл покрывается бесцветной тонкой, но прочной «броней» из оксида, которая защищает металл от окисления. Так, если внести в пламя горелки толстую алюминиевую проволоку или пластинку толщиной 0,5–1 мм, то металл плавится, но алюминий не течет, так как остается в мешочке из его оксида. Если лишить алюминий защитной пленки или сделать ее рыхлой (например, погружением в раствор ртутных солей), алюминий тут же проявит свою истинную сущность: уже при комнатной температуре начнет энергично реагировать с водой с выделением водорода: 2Al + 6H 2 O ® 2Al(OH) 3 + 3H 2 . На воздухе лишенный защитной пленки алюминий прямо на глазах превращается в рыхлый порошок оксида: 2Al + 3O 2 ® 2Al 2 O 3 . Особенно активен алюминий в мелкораздробленном состоянии; алюминиевая пыль при вдувании в пламя моментально сгорает. Если смешать на керамической пластинке алюминиевую пыль с пероксидом натрия и капнуть на смесь водой, алюминий также вспыхивает и сгорает белым пламенем.

Очень высокое сродство алюминия к кислороду позволяет ему «отнимать» кислород от оксидов ряда других металлов, восстанавливая их (метод алюминотермии). Самый известный пример – термитная смесь, при горении которой выделяется так много тепла, что полученное железо расплавляется: 8Al + 3Fe 3 O 4 ® 4Al 2 O 3 + 9Fe. Эта реакция была открыта в 1856 Н.Н.Бекетовым. Таким способом можно восстановить до металлов Fe 2 O 3 , CoO, NiO, MoO 3 , V 2 O 5 , SnO 2 , CuO, ряд других оксидов. При восстановлении же алюминием Cr 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , TiO 2 , ZrO 2 , B 2 O 3 теплоты реакции недостаточно для нагрева продуктов реакции выше их температуры плавления.

Алюминий легко растворяется в разбавленных минеральных кислотах с образованием солей. Концентрированная азотная кислота, окисляя поверхность алюминия, способствует утолщению и упрочнению оксидной пленки (так называемая пассивация металла). Обработанный таким образом алюминий не реагирует даже с соляной кислотой. С помощью электрохимического анодного окисления (анодирования) на поверхности алюминия можно создать толстую пленку, которую нетрудно окрасить в разные цвета.

Вытеснение алюминием из растворов солей менее активных металлов часто затруднено защитной пленкой на поверхности алюминия. Эта пленка быстро разрушается хлоридом меди, поэтому легко идет реакция 3CuCl 2 + 2Al ® 2AlCl 3 + 3Cu, которая сопровождается сильным разогревом. В крепких растворах щелочей алюминий легко растворяется с выделением водорода: 2Al + 6NaOH + 6Н 2 О ® 2Na 3 + 3H 2 (образуются и другие анионные гидроксо-комплексы). Амфотерный характер соединений алюминия проявляется также в легком растворении в щелочах его свежеосажденного оксида и гидроксида. Кристаллический оксид (корунд) весьма устойчив к действию кислот и щелочей. При сплавлении со щелочами образуются безводные алюминаты: Al 2 O 3 + 2NaOH ® 2NaAlO 2 + H 2 O. Алюминат магния Mg(AlO 2) 2 – полудрагоценный камень шпинель, обычно окрашенный примесями в самые разнообразные цвета.

Бурно протекает реакция алюминия с галогенами. Если в пробирку с 1 мл брома внести тонкую алюминиевую проволоку, то через короткое время алюминий загорается и горит ярким пламенем. Реакция смеси порошков алюминия и иода инициируется каплей воды (вода с иодом образует кислоту, которая разрушает оксидную пленку), после чего появляется яркое пламя с клубами фиолетовых паров иода. Галогениды алюминия в водных растворах имеют кислую реакцию из-за гидролиза: AlCl 3 + H 2 O Al(OH)Cl 2 + HCl.

Реакция алюминия с азотом идет только выше 800° С с образованием нитрида AlN, с серой – при 200° С (образуется сульфид Al 2 S 3), с фосфором – при 500° С (образуется фосфид AlP). При внесении в расплавленный алюминий бора образуются бориды состава AlB 2 и AlB 12 – тугоплавкие соединения, устойчивые к действию кислот. Гидрид (AlH) х (х = 1,2) образуется только в вакууме при низких температурах в реакции атомарного водорода с парами алюминия. Устойчивый в отсутствие влаги при комнатной температуре гидрид AlH 3 получают в растворе безводного эфира: AlCl 3 + LiH ® AlH 3 + 3LiCl. При избытке LiH образуется солеобразный алюмогидрид лития LiAlH 4 – очень сильный восстановитель, применяющийся в органических синтезах. Водой он мгновенно разлагается: LiAlH 4 + 4H 2 O ® LiOH + Al(OH) 3 + 4H 2 .

Получение алюминия.

Документально зафиксированное открытие алюминия произошло в 1825. Впервые этот металл получил датский физик Ганс Христиан Эрстед , когда выделил его при действии амальгамы калия на безводный хлорид алюминия (полученный при пропускании хлора через раскаленную смесь оксида алюминия с углем). Отогнав ртуть, Эрстед получил алюминий, правда, загрязненный примесями. В 1827 немецкий химик Фридрих Вёлер получил алюминий в виде порошка восстановлением гексафторалюмината калием:

Na 3 AlF 6 + 3K ® Al + 3NaF + 3KF. Позднее ему удалось получить алюминий в виде блестящих металлических шариков. В 1854 французский химик Анри Этьен Сент-Клер Девилль разработал первый промышленный способ получения алюминия – восстановлением расплава тетрахлоралюминиата натрием: NaAlCl 4 + 3Na ® Al + 4NaCl. Тем не менее, алюминий продолжал оставаться чрезвычайно редким и дорогим металлом; он стоил ненамного дешевле золота и в 1500 раз дороже железа (сейчас – только втрое). Из золота, алюминия и драгоценных камней была сделана в 1850-х погремушка для сына французского императора Наполеона III . Когда в 1855 на Всемирной выставке в Париже был выставлен большой слиток алюминия, полученный новым способом, на него смотрели, как на драгоценность. Из драгоценного алюминия сделали верхнюю часть (в виде пирамидки) памятника Вашингтону в столице США. В то время алюминий был ненамного дешевле серебра: в США, например, в 1856 он продавался по цене 12 долл. за фунт (454 г), а серебро – по 15 долл. В изданном в 1890 1-м томе знаменитого Энциклопедического словаря Брокгауза и Ефрона говорилось, что «алюминий до сих пор служит преимущественно для выделки... предметов роскоши». К тому времени во всем мире ежегодно добывалось всего 2,5 т. металла. Лишь к концу 19 в., когда был разработан электролитический способ получения алюминия, его ежегодное производство начало исчисляться тысячами тонн, а в 20 в. – млн. тонн. Это сделало алюминий из полудрагоценного широко доступным металлом.

Современный способ получения алюминия был открыт в 1886 молодым американским исследователем Чарлзом Мартином Холлом . Химией он увлекся еще в детстве. Найдя старый учебник химии своего отца, он начал усердно штудировать его, а также ставить опыты, однажды даже получил нагоняй от матери за порчу обеденной скатерти. А спустя 10 лет он сделал выдающееся открытие, прославившее его на весь мир.

Став в 16 лет студентом, Холл услышал от своего преподавателя, Ф.Ф.Джуэтта, что если кому-нибудь удастся разработать дешевый способ получения алюминия, то этот человек не только окажет огромную услугу человечеству, но и заработает огромное состояние. Джуэтт знал, что говорил: ранее он стажировался в Германии, работал у Вёлера, обсуждал с ним проблемы получения алюминия. С собой в Америку Джуэтт привез и образец редкого металла, который показал ученикам. Неожиданно Холл заявил во всеуслышание: «Я получу этот металл!»

Шесть лет продолжалась упорная работа. Холл пытался получать алюминий разными методами, но безуспешно. Наконец, он попробовал извлечь этот металл электролизом. В то время электростанций не было, ток приходилось получать с помощью больших самодельных батарей из угля, цинка, азотной и серной кислот. Холл работал в сарае, где устроил маленькую лабораторию. Ему помогала сестра Джулия, которая очень интересовалась опытами брата. Она сохранила все его письма и рабочие журналы, которые позволяют буквально по дням проследить историю открытия. Вот выдержка из ее воспоминаний:

«Чарлз всегда был в хорошем настроении, и даже в самые плохие дни был способен посмеяться над судьбой незадачливых изобретателей. В часы неудач он находил утешение за нашим стареньким пианино. В своей домашней лаборатории он работал по-многу часов без перерыва; а когда он мог ненадолго оставить установку, то мчался через весь наш длинный дом, чтобы немного поиграть... Я знала, что, играя с таким обаянием и чувством, он постоянно думает о своей работе. И музыка ему в этом помогала.»

Самым трудным было подобрать электролит и защитить алюминий от окисления. Через шесть месяцев изнурительного труда в тигле, наконец, появилось несколько маленьких серебристых шариков. Холл немедленно побежал к своему бывшему преподавателю, чтобы рассказать об успехе. «Профессор, я получил его!», – воскликнул он, протягивая руку: на ладони лежал десяток маленьких алюминиевых шариков. Это произошло 23 февраля 1886. А спустя ровно два месяца, 23 апреля того же года, француз Поль Эру взял патент на аналогичное изобретение, которое он сделал независимо и почти одновременно (поразительны и два других совпадения: и Холл, и Эру родились в 1863 и умерли в 1914).

Сейчас первые шарики алюминия, полученные Холлом, хранятся в Американской Алюминиевой компании в Питтсбурге как национальная реликвия, а в его колледже стоит памятник Холлу, отлитый из алюминия. Впоследствии Джуэтт писал: «Моим самым важным открытием было открытие человека. Это был Чарлз М.Холл, который в возрасте 21 года открыл способ восстановления алюминия из руды, и таким образом сделал алюминий тем замечательным металлом, которым теперь широко пользуются во всем мире». Пророчество Джуэтта сбылось: Холл получил широкое признание, стал почетным членом многих научных обществ. Но личная жизнь ему не удалась: невеста не хотела смириться с тем, что ее жених все время проводит в лаборатории, и расторгла помолвку. Холл нашел утешение в родном колледже, где он проработал до конца жизни. Как писал брат Чарлза, «колледж был для него и женой, и детьми, и всем остальным – всю его жизнь». Колледжу Холл завещал и б?льшую часть своего наследства – 5 млн. долл. Умер Холл от лейкемии в возрасте 51 года.

Метод Холла позволил получать с помощью электричества сравнительно недорогой алюминий в больших масштабах. Если с 1855 до 1890 было получено лишь 200 тонн алюминия, то за следующее десятилетие по методу Холла во всем мире получили уже 28 000 т этого металла! К 1930 мировое ежегодное производство алюминия достигло 300 тыс. тонн. Сейчас же ежегодно получают более 15 млн. т. алюминия. В специальных ваннах при температуре 960–970° С подвергают электролизу раствор глинозема (технический Al 2 O 3) в расплавленном криолите Na 3 AlF 6 , который частично добывают в виде минерала, а частично специально синтезируют. Жидкий алюминий накапливается на дне ванны (катод), кислород выделяется на угольных анодах, которые постепенно обгорают. При низком напряжении (около 4,5 В) электролизеры потребляют огромные токи – до 250 000 А! За сутки один электролизер дает около тонны алюминия. Производство требует больших затрат электроэнергии: на получение 1 тонны металла затрачивается 15000 киловатт-часов электроэнергии. Такое количество электричества потребляет большой 150-квартирный дом в течение целого месяца. Производство алюминия экологически опасно, так как атмосферный воздух загрязняется летучими соединениями фтора.

Применение алюминия.

Еще Д.И.Менделеев писал, что «металлический алюминий, обладая большою легкостью и прочностью и малою изменчивостью на воздухе, очень пригоден для некоторых изделий». Алюминий – один из самых распространенных и дешевых металлов. Без него трудно представить себе современную жизнь. Недаром алюминий называют металлом 20 века. Он хорошо поддается обработке: ковке, штамповке, прокату, волочению, прессованию. Чистый алюминий – довольно мягкий металл; из него делают электрические провода, детали конструкций, фольгу для пищевых продуктов, кухонную утварь и «серебряную» краску. Этот красивый и легкий металл широко используют в строительстве и авиационной технике. Алюминий очень хорошо отражает свет. Поэтому его используют для изготовления зеркал – методом напыления металла в вакууме.

В авиа- и машиностроении, при изготовлении строительных конструкций, используют значительно более твердые сплавы алюминия. Один из самых известных – сплав алюминия с медью и магнием (дуралюмин, или просто «дюраль»; название происходит от немецкого города Дюрена). Этот сплав после закалки приобретает особую твёрдость и становится примерно в 7 раз прочнее чистого алюминия. В то же время он почти втрое легче железа. Его получают, сплавляя алюминий с небольшими добавками меди, магния, марганца, кремния и железа. Широко распространены силумины – литейные сплавы алюминия с кремнием. Производятся также высокопрочные, криогенные (устойчивые к морозам) и жаропрочные сплавы. На изделия из алюминиевых сплавов легко наносятся защитные и декоративные покрытия. Легкость и прочность алюминиевых сплавов особенно пригодились в авиационной технике. Например, из сплава алюминия, магния и кремния делают винты вертолетов. Сравнительно дешевая алюминиевая бронза (до 11% Al) обладает высокими механическими свойствами, она устойчива в морской воде и даже в разбавленной соляной кислоте. Из алюминиевой бронзы в СССР с 1926 по 1957 чеканились монеты достоинством 1, 2, 3 и 5 копеек.

В настоящее время четвертая часть всего алюминия идет на нужды строительства, столько же потребляет транспортное машиностроение, примерно 17% часть расходуется на упаковочные материалы и консервные банки, 10% – в электротехнике.

Алюминий содержат также многие горючие и взрывчатые смеси. Алюмотол, литая смесь тринитротолуола с порошком алюминия, – одно из самых мощных промышленных взрывчатых веществ. Аммонал – взрывчатое вещество, состоящее из аммиачной селитры, тринитротолуола и порошка алюминия. Зажигательные составы содержат алюминий и окислитель – нитрат, перхлорат. Пиротехнические составы «Звездочки» также содержат порошкообразный алюминий.

Смесь порошка алюминия с оксидами металлов (термит) применяют для получения некоторых металлов и сплавов, для сварки рельсов, в зажигательных боеприпасах.

Алюминий нашел также практическое применение в качестве ракетного топлива. Для полного сжигания 1 кг алюминия требуется почти вчетверо меньше кислорода, чем для 1 кг керосина. Кроме того, алюминий может окисляться не только свободным кислородом, но и связанным, входящим в состав воды или углекислого газа. При «сгорании» алюминия в воде на 1 кг продуктов выделяется 8800 кДж; это в 1,8 раза меньше, чем при сгорании металла в чистом кислороде, но в 1,3 раза больше, чем при сгорании на воздухе. Значит, в качестве окислителя такого топлива можно использовать вместо опасных и дорогостоящих соединений простую воду. Идею использования алюминия в качестве горючего еще в 1924 предложил отечественный ученый и изобретатель Ф.А.Цандер. По его замыслу можно использовать алюминиевые элементы космического корабля в качестве дополнительного горючего. Этот смелый проект пока практически не осуществлен, зато большинство известных в настоящее время твердых ракетных топлив содержат металлический алюминий в виде тонкоизмельченного порошка. Добавление 15% алюминия к топливу может на тысячу градусов повысить температуру продуктов сгорания (с 2200 до 3200 К); заметно возрастает и скорость истечения продуктов сгорания из сопла двигателя – главный энергетический показатель, определяющий эффективность ракетного топлива. В этом плане конкуренцию алюминию могут составить только литий, бериллий и магний, но все они значительно дороже алюминия.

Широкое применение находят и соединения алюминия. Оксид алюминия – огнеупорный и абразивный (наждак) материал, сырье для получения керамики. Из него также делают лазерные материалы, подшипники для часов, ювелирные камни (искусственные рубины). Прокаленный оксид алюминия – адсорбент для очистки газов и жидкостей и катализатор ряда органических реакций. Безводный хлорид алюминия – катализатор в органическом синтезе (реакция Фриделя – Крафтса), исходное вещество для получения алюминия высокой чистоты. Сульфат алюминия применяют для очистки воды; реагируя с содержащимся в ней гидрокарбонатом кальция:

Al 2 (SO 4) 3 + 3Ca(HCO 3) 2 ® 2AlO(OH) + 3CaSO 4 + 6CO 2 + 2H 2 O, он образует хлопья оксида-гидроксида, которые, оседая, захватывают, а также сорбируют на поверхности находящиеся в воде взвешенные примеси и даже микроорганизмы. Кроме того, сульфат алюминия применяют как протраву при крашении тканей, для дубления кожи, консервирования древесины, проклеивания бумаги. Алюминат кальция – компонент вяжущих материалов, в том числе портландцемента. Иттрий-алюминиевый гранат (ИАГ) YAlO 3 – лазерный материал. Нитрид алюминия – огнеупорный материал для электропечей. Синтетические цеолиты (они относятся к алюмосиликатам) – адсорбенты в хроматографии и катализаторы. Алюминийорганические соединения (например, триэтилалюминий) – компоненты катализаторов Циглера – Натты, которые используются для синтеза полимеров, в том числе синтетического каучука высокого качества.

Илья Леенсон

Литература:

Тихонов В.Н. Аналитическая химия алюминия . М., «Наука», 1971
Популярная библиотека химических элементов . М., «Наука», 1983
Craig N.C. Charles Martin Hall and his Metall. J.Chem.Educ . 1986, vol. 63, № 7
Kumar V., Milewski L. Charles Martin Hall and the Great Aluminium Revolution . J.Chem.Educ., 1987, vol. 64, № 8